The purpose of this study is to develop and apply an informal engineering education program for engineering education that is realized outside the framework of formal education. To this end, a non-format engineering education program was developed and rationalized, discussing participants' experience in participating in the program. The developed non-format engineering education program was applied to 90 high school learners interested in engineering in a one-night, two-day camp format, and the goal was confirmed through open surveys and in-depth interviews. The goal of the non-format engineering education program is to understand the importance of engineering and engineering design in real life and the principles of engineering design processes, and to use a variety of knowledge and tools to creatively solve engineering problems creatively. In addition, education programs were developed based on the fact that real-life examples allow engineers to understand what they do, design their own careers, and collaborate with colleagues to share various engineering issues and develop communication skills on engineering topics.
This study investigated what kind of informal knowledge is emergent and what role informal knowledge play in process of solving 2-digit by 2-digit multiplication task. The data come from 4 times interviews with a 3th grade student who had not yet received regular school education regarding 2-digit by 2-digit multiplication. And the data involves the student's activity paper, the characteristics of action and the clue of thinking process. Findings from these interviews clarify the child's informal knowledge to modeling strategy, doubling strategy, distributive property, associative property. The child formed informal knowledge to justify and modify her conjecture of the algorithm.
This study aims to investigate a child's informal knowledge of carrying and borrowing in additive calculations. The additive word problems including three types of calculations are posed a child that is the first grader and has no lessons about carrying and borrowing. By analysing his answers, his informal knowledge, that is his methods and strategies for calculating the additive problems are revealed. As a result, conceptual aspects and procedural aspects of his informal knowledge are recognized, and the didactical implications are induced for connecting his informal knowledge and the formal knowledge about carrying and borrowing.
Journal of the Korean Society for information Management
/
v.16
no.4
/
pp.53-74
/
1999
This paper describes concept mapping techniques for eliciting and representing knowledge. Concept mapping techniques range from very informal to very formal. Informal concept mapping techniques are usually very easy to use and understand for humans, but not for computers. Formal concept mapping techniques are computational, but humans usually find them hard to understand and use. A knowledge acquisition and representation tools which handle both kinds, and the transition from informal to formal, would be very useful. It is proposed that concept maps be regarded as basic components of any knowledge-based system, complementing text and image with formal and informl active diagrams.
Journal of Elementary Mathematics Education in Korea
/
v.10
no.2
/
pp.221-242
/
2006
For teaching division more effectively, it is necessary to know students' informal knowledge before they learned formal knowledge about division. The purpose of this study is to research students' informal knowledge of division and to analyze meaningful suggestions to link formal knowledge of division in elementary school mathematics. According to this purpose, two research questions were set up as follows: (1) What is the students' informal knowledge before they learned formal knowledge about division in elementary school mathematics? (2) What is the difference of thinking strategies between students who have learned formal knowledge and students who have not learned formal knowledge? The conclusions are as follows: First, informal knowledge of division of natural numbers used by grade 1 and 2 varies from using concrete materials to formal operations. Second, students learning formal knowledge do not use so various strategies because of limited problem solving methods by formal knowledge. Third, acquisition of algorithm is not a prior condition for solving problems. Fourth, it is necessary that formal knowledge is connected to informal knowledge when teaching mathematics. Fifth, it is necessary to teach not only algorithms but also various strategies in the area of number and operation.
The purpose of this study is to search for the direction of informal science education research by analyzing them from the educational perspectives of informal science education. For this purpose, this study analyzed 144 journals related to informal science education that have been issued in the last six years in terms of educational perspectives. As a result, this study found a tendency for studies to be biased towards a few educational perspectives such as scientific practice participation, emotional enhancement, and understanding of knowledge, while studies on the understanding of nature of science have been conducted in a few cases. This tendency was also found in the analysis of the detailed media in each field, however, the biased educational perspectives varied from media to media. Therefore, in order to understand various aspects of informal science education itself, which is not a subsidy of formal school education, and to deeply understand what each media is trying to pursue, it should be done with various educational perspectives in each media study.
Proceedings of the Korean Information Science Society Conference
/
2005.07b
/
pp.601-603
/
2005
군집 유효화 평가는 군집화 알고리즘을 진정한 의미의 비감독 학습이 가능하도록 만든다는 의미에서 그 중요성이 더해지고 있다. 본 논문에서는 이 군집 유효화 평가에 일반적으로 이용되는 군집 유효화 지수들의 설계원리를 분석하고 기존 지수들의 부합성을 분석한다. 우리는 제 (I) 부에서 합 형식의 지수들을 다루었으며, 본 논문에서는 비 형식의 지수들을 다룬다. 합형식의 CVI에서처럼 저역 필터링의 문제점을 해결하였으며, 또한, 부작용 없이 비형식의 지수들의 성능을 향상시킬 수 있는 새로운 기법을 제시한다. 새로운 지수들의 성능은 실험 학습을 통해 제시된다.
Jo, Miheon;Heo, Heeok;Kang, Euisung;Ryu, Sookhee;Kim, Yongdae;Seo, Jeonghee
Journal of The Korean Association of Information Education
/
v.17
no.3
/
pp.291-304
/
2013
Considering the change of educational environments and strategies for the future, this research attempted to develop project learning that uses various smart technologies, and integrates formal education within a school with informal learning experiences outside of the school. For effective learning, the processes of the project learning, instructional activities for each process and supporting materials were specified and developed as a learning package. The project learning program and the instructional package were applied to 18 fifth graders in an elementary school located in Seoul. The results of the pilot test were collected with observations, interviews, and assessment of learning processes and products. And then the results were analyzed in regard of 'the whole processes of project activities', 'learning materials and tools', and 'informal learning experiences'. Based on the results, some suggestions were provided for implementing the smart project learning for integrative learning experiences.
The purpose of this study is to investigate children's informal knowledge of the fractional multiplication and to develop a teaching material connecting the informal and the formal knowledge. Six lessons of the pre-teaching material are developed based on literature reviews and administered to the 7 students of the 4th grade in an elementary school. It is shown in these teaching experiments that children's informal knowledge of the fractional multiplication are the direct modeling of using diagram, mathematical thought by informal language, and the representation with operational expression. Further, teaching and learning methods of formalizing children's informal knowledge are obtained as follows. First, the informal knowledge of the repeated sum of the same numbers might be used in (fractional number)$\times$((natural number) and the repeated sum could be expressed simply as in the multiplication of the natural numbers. Second, the semantic meaning of multiplication operator should be understood in (natural number)$\times$((fractional number). Third, the repartitioned units by multiplier have to be recognized as a new units in (unit fractional number)$\times$((unit fractional number). Fourth, the partitioned units should be reconceptualized and the case of disjoint between the denominator in multiplier and the numerator in multiplicand have to be formalized first in (proper fractional number)$\times$(proper fractional number). The above teaching and learning methods are melted in the teaching meterial which is made with corrections and revisions of the pre-teaching meterial.
Journal of Elementary Mathematics Education in Korea
/
v.12
no.1
/
pp.59-78
/
2008
The purpose of this study was to research and analyze students' informal knowledge before they learned formal knowledge about fraction concepts and to see how to apply this informal knowledge to teach fraction concepts. According to this purpose, research questions were follows. 1) What is the students' informal knowledge about dividing into equal parts, the equivalent fraction, and comparing size of fractions among important and primary concepts of fraction? 2) What are the contents to can lead bad concepts among students' informal knowledge? 3) How will students' informal knowledge be used when teachers give lessons in fraction concepts? To perform this study, I asked interview questions that constructed a form of drawing expression, a form of story telling, and a form of activity with figure. The interview questions included questions related to dividing into equal parts, the equivalent fraction, and comparing size of fractions. The conclusions are as follows: First, when students before they learned formal knowledge about fraction concepts solve the problem, they use the informal knowledge. And a form of informal knowledge is vary various. Second, among students' informal knowledge related to important and primary concepts of fraction, there are contents to lead bad concepts. Third, it is necessary to use students' various informal knowledge to instruct fraction concepts so that students can understand clearly about fraction concepts.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.