최근 차세대 비디오 코덱 표준화를 위해서 결성된 JCT-VC에서는부호화 효율을 향상시키기 위하여 계층적 부호화 구조와 계층적 변환 블록 구조를 고려해왔다. 계층적 부호화 구조와 변환 블록 구조는 부호화 효율을 향상시킬 수 있는 장점이 있지만, 다양한 형태의 복수 계층 구조를 고려하기 때문에 부호화기의 복잡도를 증가시킨다. 따라서 복잡도 증가를 최소화하면서 부호화 효율을 최대화하기 위하여, 최대 부호화 블록 크기 및 최대 변환 블록 크기를 최적의 값으로 제한할 필요가 있다. 본 문서에서는 다양한 실험 결과들에 대한 분석을 통해서 부호화 효율과 복잡도를 동시에 고려한 최적의 최대 부호화 블록 크기와 계층적 변환 블록 구조를 위한 최적의 깊이 제한에 대하여 설명한다.
압축 센싱은 샤논/나이퀴스트 표본화 정리를 만족하는 나이퀴스트 율보다 더 적은 수의 표본화 주파수로 신호를 획득하더라도 그 신호가 성긴 신호라는 조건 하에 샘플링을 가능하게 하는 신호 처리 기술이다. 특히, BCS-SPL 구조는 가장 널리 사용되고 있는 방법 중에 한 가지이고, 현재에는 다양한 BCS-SPL 방식들이 연구되고 있다. 그러나 복원할 때, 블록크기는 복원 영상의 품질에 큰 영향을 미치고, 본 논문에서는 기본 구조와 더불어 구조화된 형태에 대해 다양한 블록 크기에 따라 성능을 비교한다. 다양한 실험 결과를 통하여 기본적인 구조의 BCS-SPL 알고리즘이 블록 크기 4일 때 가장 우수한 성능을 보여줌을 확인한다.
본 논문에서는 가변 크기 블록 기반의 새로운 얼굴 특징 표현 방법을 제안한다. 기존 외형 기반의 얼굴 표정 인식 방법들은 얼굴 특징을 표현하기 위해 얼굴 영상 전체를 균일한 블록으로 분할하는 uniform grid 방법을 사용하는데, 이는 다음 두가지 문제를 가지고 있다. 얼굴 이외의 배경이 포함될 수 있어 표정을 구분하는 데 방해 요소로 작용하고, 각 블록에 포함된 얼굴의 특징은 입력영상 내 얼굴의 위치, 크기 및 방위에 따라 달라질 수 있다. 본 논문에서는 이러한 문제를 해결하기 위해 유의미한 표정변화가 가장 잘 나타내는 블록의 크기와 위치를 결정하는 가변 크기 블록 방법을 제안한다. 이를 위해 얼굴의 특정점을 추출하여 표정인식에 기여도가 높은 얼굴부위에 대하여 블록 설정을 위한 기준점을 결정하고 AdaBoost 방법을 이용하여 각 얼굴부위에 대한 최적의 블록 크기를 결정하는 방법을 제시한다. 제안된 방법의 성능평가를 위해 LDTP를 이용하여 표정특징벡터를 생성하고 SVM 기반의 표정 인식 시스템을 구성하였다. 실험 결과 제안된 방법이 기존의 uniform grid 기반 방법보다 우수함을 확인하였다. 특히, 제안된 방법이 형태와 방위 등의 변화가 상대적으로 큰 MMI 데이터베이스에서 기존의 방법보다 상대적으로 우수한 성능을 보여줌으로써 입력 환경의 변화에 보다 효과적으로 적응할 수 있음을 확인하였다.
최근 블록체인은 트릴레마를 해결하기 위해 이상적인 분산 신뢰 네트워크를 설계하려고 노력했다. 그러나 일부 국가간 분쟁으로 에너지 분배의 불균형이 발생했고, 현재 비트코인과 같은 블록체인 네트워크가 거래와 채굴을 위해 엄청난 에너지를 소비하고 있다. 기존 연구인 데이터 볼륨 기반 신뢰 모델은 루빈 방식의 신뢰 모델보다 증가하는 블록체인 크기를 더 잘 평가했다. 본 논문에서는 성장하는 블록체인 네트워크의 존속시간, 블록체인 크기 및 거래를 위해 소모된 에너지를 고려하여 블록체인 네트워크의 지속 가능성을 평가하는 확장성 기반 에너지 모델을 제안한다. 또한 수학적 분석을 통해 제안 모델과 기존 모델에 대한 만족도와 최적의 블록체인 크기를 비교한다. 그러므로 제안된 확장성 기반 에너지 모델은 트릴레마를 해결하고 지속 가능성을 검증하는 적절한 블록체인 네트워크를 선택할 수 있는 평가 툴을 제공할 것이다.
본 논문에서는 하드웨어 HEVC 디코더의 움직임 보상 모듈의 구조를 제안한다. 제안된 구조를 갖는 움직임 보상 모듈은 하드웨어 처리 싸이클 수와 내부메모리 크기를 감소시키기 위해 하나의 코딩 유닛을 그보다 작은 여러 개의 블록으로 분할하여 처리할 수 있다. 제안된 움직임 보상 구조는 캐시를 통해 외부 메모리에 접근하여 참조 픽쳐를 로딩하는 단계와 보간 필터를 거쳐 예측 샘플을 생성하는 단계로 내부-파이프라인을 구성하며 코딩 유닛의 크기에 따라 내부-파이프라인에서 처리할 블록의 크기를 결정한다. 본 논문에서는 코딩 유닛 분할의 기준이 되는 블록 크기를 결정하기 위한 절충사항에 대해서도 논의한다. 제안된 구조의 효율성을 판단하기 위해 구현된 움직임 보상 모듈을 RTL 시뮬레이션 및 FPGA 보드 검증을 통해 테스트 하였으며, SoC 로 제작될 경우 초당 249 Mpixel 을 처리하여 4K-UHD 시퀀스의 실시간 디코딩이 가능한 것으로 판단되었다.
본 논문에서는 분산메모리를 가진 병렬 컴퓨터에서 밀집 행렬 연산을 위한 PoLAPACK 패키지를 소개한다. PoLAPACK은 새로운 연산 기법을 적용한 LU, QR, Cholesky 인수분해 알고리즘들을 포함하고 있다. 블록순환분산법으로 분산되어 있는 행렬에 알고리즘적인 블록 기법(algorithimic blocking)을 적용하여, 실제 행렬의 분산에 사용된 블록의 크기와 다른, 최대의 성능을 보일 수 있는 최적의 블록 크기로 연산을 수행할 수 있다. 이러한 연산 방식은 분산되어 있는 원래의 행렬 A의 순서를 따르지 않으며, 따라서 최적의 블록 크기로 연산을 수행한 후에 얻어진 해 x를 원래 행렬 분산법을 따라서 재배치하여야 한다. 본 연구는 Cray T3E 컴퓨터에서 구현하였으며 ScaLAPACK의 인수분해 루틴들과 그 성능을 비교.분석하였다.
지능형 서비스 분야에 있어 3D맵은 유용하고 다양한 정보를 제공할 수 있다. 기존의 삼차원 공간에 대한 연구 방법들은 제공하는 데이터가 원초적이고 처리량이 방대하여 지능형 서비스의 실시간 처리에는 적절하지 못하다. 본 논문에서는 전방의 공간에 대하여 스테레오 정합 연산의 결과인 거리정보 이미지를 바탕으로 블록 기반의 맵을 구성하여 해당 공간의 다양한 정보를 제공할 수 있는 방안을 제안한다. 블록기반 3D맵은 객체율과 블록크기의 2개의 중요한 변수를 가진다. 객체율은 하나의 블록에서 공간대비 객체의 픽셀수의 비율로써 블록종류를 결정한다. 블록크기는 정육면체로 구성되는 개별 블록의 한 변의 픽셀수를 나타내며, 블록의 크기를 결정한다. 실험을 통하여 블록기반 3D맵은 기존의 거리정보 이미지에 비하여 노이즈와 데이터양을 효과적으로 감소시키는 것을 확인하였다. $320{\times}240$크기의 거리정보 이미지에 대하여 블록크기는 $40{\times}40$, 객체율은 30%에서 50%로 설정하였을 때 가장 정합율이 높은 블록기반 3D맵을 취득할 수 있음을 확인하였다. 블록기반 3D맵은 지능형 서비스분야에서 사용하기 용이하고 다양한 새로운 서비스를 도출할 수 있는 고부가가치를 갖는 정보를 제공할 수 있다.
최근 ISO/IEC의 MPEG과 ITU-T의 VCEG이 JCT-VC (Joint Collaborative Team for Video Coding)를 구성하여 HEVC (High Efficiency Video Coding) 차세대 비디오 압축 표준 제정을 위한 작업을 진행 중이다. 과거 압축률이 가장 좋은 것으로 알려진 H.264/AVC 보다 최대 50%까지 부호화 효율 향상을 목표로 하고 있다. HEVC는 H.264/AVC와는 상이한 부호화 구조를 채택하고 있고 작은 크기의 영상뿐만 아니라 크기가 큰 영상까지도 효율적으로 부호화할 수 있도록 설계되고 있다. 예측 및 변환 부호화 과정이 계층적 쿼드트리 구조를 가지며, 특히 변환 부호화는 작은 크기의 변환 블록으로부터 $32{\times}32$ 크기의 변환 블록까지 크게 확장되어 계층적 변환 구조를 이루며 부호화하도록 되어 있다. 본 논문에서는 기존 코덱과는 상이한 부호화 구조를 갖는 쿼드트리 부호화 기반 HEVC 코덱 표준을 위한 율-왜곡 (Rate-Distortion) 모델을 제안한다. 기존의 코덱에서는 부호화되는 기본 단위가 $16{\times}16$로 일정하고, 변환 및 양자화되는 블록의 크기 역시 $4{\times}4$또는 $8{\times}8$ 크기 단위로 그 블록의 크기가 작을 뿐만 아니라 고정된 크기를 사용한다. 따라서 단일 확률 모형을 사용하여 율-왜곡 모델을 만들었으며, 그 정확도 역시 비교적 정확한 결과를 얻었다. 그러나 HEVC에서는 계층적 가변 블록 크기를 갖는 기본 부호화, 예측 및 변환/양자화 기법을 사용하기 때문에 기존의 단일 모델로는 정확한 율-왜곡 모델을 만들어 내기 어렵다. 제안하는 방법은 HEVC의 기본 단위인 CU (Coding Unit)별로 독립적인 확률 모형을 사용하여 율-왜곡모델을 사용하는 것으로 CU의 크기가 가변적이고 CU 내의 텍스처 역시 크기에 따라 매우 다른 특성을 가지고 있기 때문에 단일 모델을 사용하는 것보다 매우 효율적인 것을 실험을 통하여 확인하였다.
본 논문에서는 연속적인 레인지(range) 영상 자료로부터 동작 벡터를 추출하는 새로운 블록 정합 알고리즘을 제안한다. 본 논문에서 제안된 알고리즘은 단일 특징을 사용하지 않고 다중 특징인 명암값, 색상, 레인지 특징의 세 가지 특징을 통합한 정합 유사 함수를 정의하며, 엔트로피를 이용하여 각 특징의 기여도를 구한 후 이를 가중치의 형태로 정합 유사 함수에 적용한다. 그리고 제안된 알고리즘은 고정된 블록 템플릿을 사용하지 않고 가변적인 크기의 블록 템플릿을 사용한다. 제안한 블록 정합에서는 먼저 작은 정합 템플릿으로 블록 정합을 시작한다. 만일 정합 정도가 좋지 않으면 정합 템플릿의 크기를 조금 확장한 후 본 논문에서 정의한 정합기준이 만족하거나 사전에 정의된 최대 블록 크기에 도달할 때까지 블록정합을 반복한다. 실험에서는 본 논문에서 제안한 블록 정합 알고리즘과 기존의 다른 알고리즘의 성능을 비교 분석하여 제안한 알고리즘의 우수함을 보인다.
VVC(Versatile Video Coding)는 입력된 영상을 CTU(Coding Tree Unit) 단위로 분할하여 코딩하며, 이를 다시 QTBTT(Quadtree plus binary tree and triple tree)로 분할하고, TU(Transform Unit)도 이와 같은 단위로 분할된다. 따라서 TU의 크기는 $4{\times}4$, $4{\times}8$, $4{\times}16$, $4{\times}32$, $8{\times}4$, $16{\times}4$, $32{\times}4$, $8{\times}8$, $8{\times}16$, $8{\times}32$, $16{\times}8$, $32{\times}8$, $16{\times}16$, $16{\times}32$, $32{\times}16$, $32{\times}32$, $64{\times}64$의 17가지 종류가 있다. 기존의 VVC 참조 Software인 VTM에서는 디블록킹필터와 SAO(Sample Adaptive Offset)로 이루어진 인루프필터를 이용하여 에러를 복원하는데, 본 논문은 TU 크기에 따라서 원본블록과 복원블록의 차이(에러)가 통계적으로 다름을 이용하여 서로 다른 CNN(Convolution Neural Network)을 구축하고 에러를 복원하는 방법으로 VTM의 인루프 필터를 대체한다. 복원영상의 에러를 감소시키기 위하여 TU 블록크기에 따라 DenseNet의 Dense Block기반 CNN을 구성하고, Hyper Parameter와 복잡도의 감소를 위해 네트워크 간에 일부 가중치를 공유하는 모양의 Network를 구성하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.