CNN-based In-loop Filter on TU Block

TU 블록 크기에 따른 CNN기반 인루프필터

  • Published : 2018.11.02

Abstract

VVC(Versatile Video Coding)는 입력된 영상을 CTU(Coding Tree Unit) 단위로 분할하여 코딩하며, 이를 다시 QTBTT(Quadtree plus binary tree and triple tree)로 분할하고, TU(Transform Unit)도 이와 같은 단위로 분할된다. 따라서 TU의 크기는 $4{\times}4$, $4{\times}8$, $4{\times}16$, $4{\times}32$, $8{\times}4$, $16{\times}4$, $32{\times}4$, $8{\times}8$, $8{\times}16$, $8{\times}32$, $16{\times}8$, $32{\times}8$, $16{\times}16$, $16{\times}32$, $32{\times}16$, $32{\times}32$, $64{\times}64$의 17가지 종류가 있다. 기존의 VVC 참조 Software인 VTM에서는 디블록킹필터와 SAO(Sample Adaptive Offset)로 이루어진 인루프필터를 이용하여 에러를 복원하는데, 본 논문은 TU 크기에 따라서 원본블록과 복원블록의 차이(에러)가 통계적으로 다름을 이용하여 서로 다른 CNN(Convolution Neural Network)을 구축하고 에러를 복원하는 방법으로 VTM의 인루프 필터를 대체한다. 복원영상의 에러를 감소시키기 위하여 TU 블록크기에 따라 DenseNet의 Dense Block기반 CNN을 구성하고, Hyper Parameter와 복잡도의 감소를 위해 네트워크 간에 일부 가중치를 공유하는 모양의 Network를 구성하였다.

Keywords