• Title/Summary/Keyword: 블랙

Search Result 1,225, Processing Time 0.031 seconds

Protective Effect of Radiation-induced New Blackberry Mutant γ-B201 on H2O2-induced Oxidative Damage in HepG2 Cells (H2O2 에 의해 유도된 HepG2 세포의 산화적 스트레스에 대한 신품종 방사선 돌연변이 블랙베리 γ-B201의 세포 보호 효과)

  • Cho, Byoung Ok;Lee, Chang-Wook;So, Yangkang;Jin, Chang-Hyun;Yook, Hong-Sun;Byun, Myung-Woo;Jeong, Yong-Wook;Park, Jong Chun;Jeong, Il-Yun
    • Korean Journal of Food Science and Technology
    • /
    • v.46 no.3
    • /
    • pp.384-389
    • /
    • 2014
  • The objective of the present study was to investigate the chemical composition of anthocyanin-enriched extract of radiation-induced blackberry (Rubus fruticosus L.) mutant (${\gamma}$-B201) as well as the protective effect of ${\gamma}$-B201 against oxidative stress in vitro. The cytotoxicity, reactive oxygen species (ROS) scavenging capacity, and DNA damage were assessed by WST-1 assay, flow cytometry, and comet assay, respectively. Lactate dehydrogenase, superoxide dismutase, and catalase activities were determined by using a commercial kit. The in vitro results showed that ${\gamma}$-B201 increased the cell viability, reduction of lactate dehydrogenase release, and intracellular ROS scavenging capacity in hydrogen peroxide ($H_2O_2$)-treated HepG2 cells. Furthermore, treatment with ${\gamma}$-B201 attenuated DNA damage in $H_2O_2$-treated HepG2 cells and treatment with ${\gamma}$-B201 restored the activity of superoxide dismutase and catalase in $H_2O_2$-treated HepG2 cells. In conclusion, the present study suggests that ${\gamma}$-B201 blackberry extract can exert a significant cytoprotective effect against $H_2O_2$-induced cell damage.

Association with obesity and abdominal obesity according to the kind and amount of coffee intake in Korean adults: 2013~ 2016 Korea National Health and Nutrition Examination Survey (한국 성인의 커피 섭취 유형에 따라 비만 및 복부비만에 미치는 영향 연구 : 2013 ~ 2016 국민건강영양조사 자료 활용)

  • Park, Hyoung-seop;Lee, Jung-Sug
    • Journal of Nutrition and Health
    • /
    • v.52 no.4
    • /
    • pp.369-382
    • /
    • 2019
  • Purpose: We evaluate the influence of the types of coffee beverage on obesity and abdominal obesity in Korean adults who were aged 19 years or over by using the 2013 ~ 2016 Korea National Health and Nutrition Examination Survey (KNHANES). Methods: Specific questions were asked about frequency of coffee intake, the type of coffee beverage, the addition of milk and/or sugar to coffee by using the food frequency questionnaire of the 2013 ~ 2016 KNHANES. Results: We found that coffee intake increased the prevalence of obesity and abdominal obesity. After multivariable adjustment, coffee consumption increased the risk of obesity by 1.30 (95% CI: 1.08 ~ 1.57) in the group that drank coffee twice a day, and 1.33 (95% CI: 1.11 ~ 1.60) in the people who drank coffee ${\geq}3$ times a day as compared to that of the non-coffee intake group. The risk of abdominal obesity increased to 1.27 (95% CI: 1.02 ~ 1.57) in the < 1 time/day coffee drinking group, 1.34 (95% CI: 1.08 ~ 1.66) in the 1 time/day coffee drinking group, 1.35 (95% CI: 1.09 ~ 1.67) in the 2 times/day coffee drinking group, and 1.40 (95% CI: 1.14 ~ 1.72) in the ${\geq}3$ times/day coffee drinking group as compared to that of the non-coffee drinking group. The influence of black coffee intake was different according to gender: males showed a high prevalence of abdominal obesity and females showed a high prevalence of obesity. Mixed coffee consumption increased the risk of obesity and abdominal obesity by more than 34% in men who consumed coffee more than 3 times a day and in women who consumed coffee more than 2 times per day. Conclusions: We found that coffee intake, regardless of the type of coffee, increased the prevalence of obesity and abdominal obesity. It is necessary to refrain from drinking coffee to prevent obesity.

Synthesis and Characterization of Non-precious Metal Co-PANI-C Catalysts for Polymer Electrolyte Membrane Fuel Cell Cathodes (고분자 전해질 연료전지 캐소드용 코발트-폴리아닐린-탄소로 구성된 비귀금속 촉매의 제조 및 특성 평가)

  • Choi, Jong-Ho
    • Journal of the Korean Electrochemical Society
    • /
    • v.16 no.1
    • /
    • pp.52-58
    • /
    • 2013
  • In order to overcome the cost issue for commercialization of polymer electrolyte membrane fuel cell (PEMFC), this research was conducted for replacing platinum cathode catalyst with non-precious metal catalyst. The non-precious metal catalyst (Co-PANI-C) was synthesized by the simple reduction method with polyaniline (PANI), carbon black, and cobalt precursor without any heat treatment. Characterization of new Co-PANI-C composite catalysts was done by the measurement of X-ray diffraction (XRD) and thermogravimetric analysis (TGA) for structure analysis and performed by rotating disk electrode (RDE) and rotating ring disk electrode (RRDE) for electrochemical analysis. As a result, Co-PANI-C catalyst showed 60 mV lower on-set potential for oxygen reduction reaction (ORR) than Pt/C catalyst, but the overall reduction current of Co-PANI-C catalysts by ORR was still smaller than that of Pt/C. In addition, the ORR behavior of Co-PANI-C catalysts depending on the rotation speed of electrode and the stability of Co-PANI-C catalyst under potential cycling and the performance of fuel cell conditions are also discussed.

Preparation and Optical Properties of Polarizing Film Based on Poly(vinyl Alcohol) Dyed by Reactive Dichroic Dyes Using Organic Solvents (유기 용매를 사용한 반응성 이색성 염료의 염착에 의한 폴리비닐알코올계 편광필름의 제조 및 광학특성)

  • Choi, E-Joon;Choi, Seung Sock;Kim, Eun-Chol;Kim, Si Min;Back, Sang-Hyun
    • Journal of Adhesion and Interface
    • /
    • v.13 no.3
    • /
    • pp.131-136
    • /
    • 2012
  • In this study, commercial poly(vinyl alcohol) (PVA) film was dyed with reactive dichroic dyes under mild conditions using organic solvents in stead of strong basic aqueous solution. After drawing of 500% of this PVA film, the polarizing efficiency and the single piece transmittance were measured. The degree of saponification of the commercialized PVA film was determined by using NMR and FT-IR spectromety. The commercial PVA film, with ca. 100% of the degree of saponification determined by NMR spectrometry, was dyed with the reactive dichroic dyes, which have 3,5-dichloro-2,4,6-triazine moiety. As a result, we found that the PVA film dyed with the reactive congo red showed relatively good polarization efficiency, and the PVA film dyed with the reactive direct black 22 exhibited relatively good single piece transmittance.

Application of Unburned Carbon Produced from Seochun Power Plant (서천화력발전소 매립 석탄재에서 분리한 미연탄소의 재활용 방안)

  • Lee, Sujeong;Cho, Seho;Lee, Young-Seak;An, Eung-Mo;Cho, Sung-Baek
    • Resources Recycling
    • /
    • v.23 no.1
    • /
    • pp.40-47
    • /
    • 2014
  • Feasibility of utilizing unburned carbon residue in coal ash as a potential precursor for the production of activated carbon was assessed to seek for solution to recycle unburned carbon residue. The unburned carbon concentrate generated from the 4 stages of cleaner flotation has a grade of 87% carbon. The crystalline impurities in the concentrate included quartz and mullite. Unburned carbon had a low specific surface area of $10m^2/g$, which might be related to a high degree of coalification of domestic anthracite coal. Carbon particles were mostly porous and have a turbostratic structure. When 1g of carbon was activated with 6g of KOH powder, the highest specific surface area value of $670m^2/g$ was achieved. Low wettability of unburned carbon particles, which was resulted from high temperature combustion in a boiler, might cause poor pore formation when they were activated by KOH solution. The activated carbon produced in this study developed micropores, with an equivalent quality of general-purpose activated carbon made from coal. Hence, it is concluded that chemically treated unburned carbon can be used for water purification or an alternative to carbon black as it is.

The Effect of Additives on the Mechanical Properties of Rigid Polyurethane (경질 폴리 우레탄의 기계적물성에 미치는 첨가제의 영향)

  • Na, Seok-En;Choi, Hwan-Oh;Lee, Jeon-Kyu;Kim, Si-Young;Ju, Chang-Sik
    • Korean Chemical Engineering Research
    • /
    • v.50 no.5
    • /
    • pp.783-788
    • /
    • 2012
  • Stern tube bearing is a shaft device playing important roles to reduce the friction of axial rotation and to support the weight of shaft. However, because there is no domestic producer of stern tube bering, imported stern tube bearings have many practical problems including prices, delivery and after services. This is why stern tube bearing should be localization. For the purpose of development of polyurethane resin for stern tube bearings, the effect of additives on the hardness, tensile strength and elongation of the polyurethane resin were systematically investigated. For the preliminary researches, depending on the type of curing agent, MOCA type and non-MOCA type polyurethanes were synthesized. Preliminary researches concluded that MOCA type polyurethane resin has more excellent mechanical properties than non-MPCA type for stern tube bearings that Tensile strength and Hardness of non-MOCA type investigated 23 D, 4.3 Mpa. Therefore, MOCA type polyurethane was adapted as base resin of this research. Silica, calcium carbonate and graphite were selected as additives for the enhancement of mechanical properties of polyurethane resin. Effect of the type and the dosage of these additives on the hardness, tensile strength, elongation of the polyurethane resin were experimentally examined. However, addition of calcium carbonate and graphite showed only minor effect on the hardness of the resin. Polyurethane resin with silica showed relatively excellent hardness, tensile strength and improved elongation.

Effect of Electrode Design on Electrochemical Performance of Highly Loaded LiCoO2 Positive Electrode in Lithium-ion Batteries (리튬이온 이차전지용 고로딩 LiCoO2 양극의 전극설계에 따른 전기화학적 성능연구)

  • Kim, Haebeen;Ryu, Ji Heon
    • Journal of the Korean Electrochemical Society
    • /
    • v.23 no.2
    • /
    • pp.47-55
    • /
    • 2020
  • Highly loaded LiCoO2 positive electrodes are prepared to construct high-energy density lithium-ion batteries, their electrochemical performances are evaluated. For the standard electrode, a loading of about 2.2 mAh/㎠ is used, and for a high-loading electrode, an electrode is manufactured with a loading level of about 4.4 mAh/㎠. The content of carbon black as electronic conducting additive, and the porosity of the electrode are configured differently to compare the effects of electron conduction and ionic conduction in the highly loaded LiCoO2 electrode. It is expected that the electrochemical performance is improved as the amount of the carbon black increases, but the specific capacity of the LiCoO2 electrode containing 7.5 weight% carbon black is rather reduced. When the conductive material is excessively provided, an increase of electrode thickness by the low content of the LiCoO2 active material in the same loading level of the electrode is predicted as a cause of polarization growth. When the electrode porosity increases, the path of ionic transport can be extended, but the electron conduction within the electrode is disadvantageous because the contact between the active material and the carbon black particles decreases. As the electrode porosity is lowered through the sufficient calendaring of the electrode, the electrochemical performance is improved because of the better contact between particles in the electrode and the reduced electrode thickness. In the electrode design for the high-loading, it is very important to construct the path of electron conduction as well as the ion transfer and to reduce the electrode thickness.

A Study on Catalytic Activity of Oxygen Reduction Reaction and Performance of PEMFC using Pt/C Synthesized by Modified Polyol (수정된 폴리올법으로 합성된 Pt/C를 이용한 산소환원반응성 및 고분자전해질 연료전지 성능 연구)

  • Yang, Jongwon;Chu, Cheonho;Kwon, Yongchai
    • Journal of Energy Engineering
    • /
    • v.23 no.3
    • /
    • pp.157-162
    • /
    • 2014
  • In this research, we investigate electrical performance and electrochemical properties of carbon supported Pt (Pt/C) that is synthesized by polyol method. With the Polyol_Pt/C that is adopted for oxygen reduction reaction (ORR) as cathode of proton exchange membrane fuel cells (PEMFCs), their catalytic activity and ORR performance and electrical performance are estimated and compared with commercial Pt/C(Johnson Mattey) catalyst. Their electrochemically active surface (EAS) area are measured by cyclic voltammetry (CV), respectively. On the other hand, regarding ORR activity and electrical performance of the catalysts, (i) linear sweeping voltammetry by rotating disk electrode and (ii) PEMFC single cell tests are used. The CV measurement demonstrate EAS of Polyol_Pt/C is compared with commercial JM_Pt/C. In case of Polyol_Pt/C, its half-wave potential, kinetic current density are excellent. Based on data obtained by half-cell test, when PEMFC single cell tests are carried out, current density measured at 0.6V and maximum power density of the PEMFC single cell employing Polyol_Pt/C are better than those employing commercial Pt/C. Conclusively, Polyol_Pt/C synthesized by modified polyol process shows better ORR catalytic activity and PEMFC performance than other catalysts.

Decomposition Characteristics of Raw Rubber and Tire by Thermal Degradation Process (열분해 공정을 이용한 원료고무와 타이어의 분해 특성)

  • Kim, Won-Il;Kim, Hyung-Jin;Jung, Soo-Kyung;Hong, In-Kwon
    • Applied Chemistry for Engineering
    • /
    • v.10 no.7
    • /
    • pp.1052-1060
    • /
    • 1999
  • Tire and raw material of tire, i.e., SBR were degraded using pyrolysis process. The yield of pyrolytic oil was increased and that of gas was decreased with increase of operating temperature in pyrolysis. And the yield of pyrolytic oil was increased and that of gas and char was decreased with increase of heating rate. The maximum oil yields of SBR and tire were 86% and 55% each at $700^{\circ}C$ with a heating rate of $20^{\circ}C/min$. The number average molecular weight ranges of SBR and tire were 740~2486, 740~1719, and the calorific value of SBR and tire was 39~40 kJ/g. The oil components were consisted of mostly 50 aromatic compounds. The particle size was decreased and the surface area was increased with increase of operating temperature, and the BET surface area was $47{\sim}63m^2/g$. The optimum condition of pyrolysis was the temperature of $700^{\circ}C$ with heating rate of $20^{\circ}C$, and the reactor was continuously purged with inert gas to sweep the evolved gases from the reaction zone.

  • PDF

Cross-cultural Observation of Street Fashion of 2006 F/W in London/paris, New York, and Seoul (2006 F/W 런던/파리, 뉴욕, 서울 크로스 컬쳐럴 스트릿 패션 고찰)

  • Kim, Chil-Soon;Cassill, Nancy
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.32 no.12
    • /
    • pp.1939-1949
    • /
    • 2008
  • The purpose of this study was to identify differences or similarities across the ensembles of 2006 F/W fashion trends in the big fashion centers such as Paris, London, New York, and Seoul, by street fashion research. The study focuses on understanding of localized fashion trend in the marketplace. We used photograph observation and analyzed data by SPSS program. We found there is a significant difference in winter outfits at these different global fashion mega cities. Most Korean women were wearing light colored outer jackets and blue jeans were dominant style for pants. The majority of Paris/London, New York and Seoul people on the street were wearing wool/wool like coat. Padded coats were worn more by New Yorkers than by people in Seoul. For the bottom, there is a similarity between Paris/London, and New York City, in that skinny pants were popular. Koreans were wearing skinny pants mostly, but the percentage of mini skirts/shorts was also higher than any other cities. We found that the cross-cultural fashion mega trend is similar in clusters, but there is a slight difference of trend in clothing color, style and design details, and accessories by localized fashion cities. Not only direct observation but also identification of cultural characteristics and consumer behavior through the years will bring much more contributions to apparel industries.