DOI QR코드

DOI QR Code

Synthesis and Characterization of Non-precious Metal Co-PANI-C Catalysts for Polymer Electrolyte Membrane Fuel Cell Cathodes

고분자 전해질 연료전지 캐소드용 코발트-폴리아닐린-탄소로 구성된 비귀금속 촉매의 제조 및 특성 평가

  • Choi, Jong-Ho (Department of New and Renewable Energy, Kyungil University)
  • 최종호 (경일대학교 신재생에너지학과)
  • Received : 2013.02.16
  • Accepted : 2013.02.27
  • Published : 2013.02.28

Abstract

In order to overcome the cost issue for commercialization of polymer electrolyte membrane fuel cell (PEMFC), this research was conducted for replacing platinum cathode catalyst with non-precious metal catalyst. The non-precious metal catalyst (Co-PANI-C) was synthesized by the simple reduction method with polyaniline (PANI), carbon black, and cobalt precursor without any heat treatment. Characterization of new Co-PANI-C composite catalysts was done by the measurement of X-ray diffraction (XRD) and thermogravimetric analysis (TGA) for structure analysis and performed by rotating disk electrode (RDE) and rotating ring disk electrode (RRDE) for electrochemical analysis. As a result, Co-PANI-C catalyst showed 60 mV lower on-set potential for oxygen reduction reaction (ORR) than Pt/C catalyst, but the overall reduction current of Co-PANI-C catalysts by ORR was still smaller than that of Pt/C. In addition, the ORR behavior of Co-PANI-C catalysts depending on the rotation speed of electrode and the stability of Co-PANI-C catalyst under potential cycling and the performance of fuel cell conditions are also discussed.

고분자 전해질 연료전지(Polymer Electrolyte Membrane Fuel Cell, PEMFC) 상용화를 위해 해결해야 할 과제 중의 하나인 가격 저감을 이루기 위한 방법으로 백금 촉매를 대신할 비귀금속(non-precious metal) 촉매 제조에 관한 연구를 수행하였다. 비귀금속 촉매의 합성은 산소환원반응(oxygen reduction reaction, ORR)의 활성점으로 알려져 있는 코발트-질소(Co-N) 결합을 형성하기 위해 질소를 포함하는 폴리아닐린(PANI)과 코발트염(Co precursor), 그리고 카본 블랙(C)을 일정한 비율대로 혼합한 후 특별한 열처리 과정 없이 단순한 화학적 환원법에 제조되었다. 제조된 Co-PANI-C 복합 촉매의 구조 분석을 위해 X-선 회절분석(X-ray diffraction, XRD)과 열중량분석(thermogravimetric analysis, TGA)을 실시하였고, ORR에 대한 활성을 평가하기 위해 rotating disk electrode(RDE) 및 rotating ring disk electrode(RRDE) 측정을 수행하였다. 그 결과 Co-PANI-C 복합 촉매는 ORR반응에 대한 개시 전압은 백금 촉매보다 60 mV 밖에 낮지 않은 값을 보였지만, 반응에 의해 발생되는 환원 전류는 여전히 백금 촉매보다 낮은 값을 보였다. 이 밖에도 전극 회전 속도에 따른 ORR 특성 변화, 전압 사이클 회수에 따른 내구성 변화, 연료전지 적용 시 성능 변화에 대해 논의할 것이다.

Keywords

References

  1. A. S. Arico, S. Srinivasan, and V. Antonucci, 'DMFCs: From Fundamental Aspects to Technology Development', Fuel Cells, 1, 133 (2001). https://doi.org/10.1002/1615-6854(200107)1:2<133::AID-FUCE133>3.0.CO;2-5
  2. K. Kordesch and G. Simader, "Fuel Cells and their Applications" Wiley-VCH, Weinheim (1996).
  3. S. Wasmus and A. Kuver, 'Methanol oxidation and direct methanol fuel cells: a selective review', J. Electroanal. Chem., 461, 14 (1999). https://doi.org/10.1016/S0022-0728(98)00197-1
  4. M. P. Hogarth and G. A. Hards, 'Direct Methanol Fuel Cells: Technological Advances and Further requirements', Plat. Met. Rev., 40, 150 (1996).
  5. D. J. Berger, 'Fuel cells and precious-metal catalysts', Science, 286, 49 (1999).
  6. T. A. Semelsberger and R. L. Borup, 'Fuel effects on start-up energy and efficiency for automotive PEM fuel cell systems', Int. J. Hydrogen Energy, 30, 425 (2005). https://doi.org/10.1016/j.ijhydene.2004.11.007
  7. J. Xie, D. L. Wood, K. L. More, P. Atanassov, and R. L. Borup, 'Microstructural changes of membrane electrode assemblies during PEFC durability testing at high humidity conditions', J. Electrochem. Soc., 152, A1011 (2005). https://doi.org/10.1149/1.1873492
  8. A. J. Appleby, 'Electrocatalysis of aqueous dioxygen reduction', J. Electroanal. Chem., 357, 117 (1993). https://doi.org/10.1016/0022-0728(93)80378-U
  9. M. Hayashi, H. Uemura, K. Shimanoe, N. Miura, and N. Yamazoe, 'Reverse micelle assisted dispersion of lanthanum manganite on carbon support for oxygen reduction cathode', J. Electrochem. Soc., 151, A158 (2004). https://doi.org/10.1149/1.1633266
  10. J.-H. Choi, 'Effect of electrochemical reduction of ruthenium black cathode catalyst on the performance of polymer electrolyte membrane fuel cells', J. Kor. Electrochem. Soc., 14, 110 (2011). https://doi.org/10.5229/JKES.2011.14.2.110
  11. N. Alonso-Vante, P. Bogdanoff, and H. Tributsch, 'On the origin of the selectivity of oxygen reduction of rutheniumcontaining electrocatalysts in methanol-containing electrolyte', J. Cat., 190, 240 (2000). https://doi.org/10.1006/jcat.1999.2728
  12. T. J. Schmidt, U. A. Paulus, H. A. Gasteiger, N. Alonso- Vante, and R. J. Behm, 'Oxygen reduction on $Ru_{1.92}$ $Mo_{0.08}SeO_{4}$, Ru/carbon, and Pt/carbon in pure and methanol-containing electrolytes', J. Electrochem. Soc., 147, 2620 (2000). https://doi.org/10.1149/1.1393579
  13. K. Kwon, 'Composition survey and analysis of non-Pt oxygen reduction catalysts for proton exchange membrane fuel cells', J. Kor. Electrochem. Soc., 15, 12 (2012) https://doi.org/10.5229/JKES.2012.15.1.012
  14. M. Lefèvre, J. P. Dodelet, and P. Bertrand, '$O_{2}$ reduction in PEM fuel cells: activity and active site structural information for catalysts obtained by the pyrolysis at high temperature of Fe precursors', J. Phys. Chem. B, 104, 11238 (2000). https://doi.org/10.1021/jp002444n
  15. G. Faubert, G. Lalande, R. Cote, D. Guay, J. P. Dodelet, L.T. Wenga, P. Bertrand, and G. Dénès, 'Heat-treated iron and cobalt tetraphenylporphyrins adsorbed on carbon black: Physical characterization and catalytic properties of these materials for the reduction of oxygen in polymer electrolyte fuel cells', Electrochim. Acta, 41, 1689 (1996). https://doi.org/10.1016/0013-4686(95)00423-8
  16. M. Bron, J. Radnik, M. Fieber-Erdmann, P. Bogdanoff, and S. Fiechter, 'EXAFS, XPS and electrochemical studies on oxygen reduction catalysts obtained by heat treatment of iron phenanthroline complexes supported on high surface area carbon black', J. Electroanal. Chem., 535, 113 (2002). https://doi.org/10.1016/S0022-0728(02)01189-0
  17. G. Faubert, R. Cote, J. P. Dodelet, M. Lefevre, and P. Bertrand, 'Oxygen reduction catalysts for polymer electrolyte fuel cells from the pyrolysis of $Fe^{(II)}$ acetate adsorbed on 3,4,9,10-perylenetetracarboxylic dianhydride', Electrochim. Acta 44, 2589 (1999). https://doi.org/10.1016/S0013-4686(98)00382-X
  18. S. L. Gojkovic, S. Gupta, and R. F. Savinell, 'Heattreated iron(III) tetramethoxyphenyl porphyrin chloride supported on high-area carbon as an electrocatalyst for oxygen reduction: Part II. Kinetics of oxygen reduction', J. Electroanal. Chem., 462, 63 (1999). https://doi.org/10.1016/S0022-0728(98)00390-8
  19. G. Lalande, G. Faubert, R. Cote, D. Guay, J. P. Dodelet, L.T. Weng, and P. Bertrand, 'Catalytic activity and stability of heat-treated iron phthalocyanines for the electroreduction of oxygen in polymer electrolyte fuel cells', J. Power Sources, 61, 227 (1996). https://doi.org/10.1016/S0378-7753(96)02356-7
  20. S. Maldonado and K. J. Stevenson, 'Direct preparation of carbon nanofiber electrodes via pyrolysis of iron(II) phthalocyanine: electrocatalytic aspects for oxygen reduction', J. Phys. Chem. B, 108, 11375 (2004).
  21. G. Wu, Z. Chen, K. Artyushkova, F. H. Garzon, and P. Zelenay, 'Polyaniline-derived non-precious catalyst for the polymer electrolyte fuel cell cathode', ECS Trans., 16, 159 (2008).
  22. G. Wu, C. Dai, D. Wang, D. Li, and N. Li, 'Nitrogendoped magnetic onion-like carbon as support for Pt particles in a hybrid cathode catalyst for fuel cells', J. Mater. Chem., 20, 3059 (2010). https://doi.org/10.1039/b924010a
  23. V. Nallathambi, J. W. Lee, S. P. Kumaraguru, G. Wu, and B. N. Popov, 'Development of high performance carbon composite catalyst for oxygen reduction reaction in proton exchange membrane fuel cells', J. Power Sources, 183, 34 (2008). https://doi.org/10.1016/j.jpowsour.2008.05.020
  24. M. Lefevre, E. Proietti, F. Jaouen, and J. P. Dodelet, 'Iron-based catalysts with improved oxygen reduction activity in polymer electrolyte fuel cells', Science, 324, 71 (2009). https://doi.org/10.1126/science.1170051
  25. P. H. Matter, E. Wang, and U. S. Ozkan, 'Preparation of nanostructured nitrogen-containing carbon catalysts for the oxygen reduction reaction from $SiO_{2}^{-}$ and $MgO^{-}$ supported metal particles', J. Catal., 243, 395 (2006). https://doi.org/10.1016/j.jcat.2006.07.029
  26. F. Jaouen, J. Herranz, M. Lefevre, J. P. Dodelet, U. I. Kramm, I. Herrmann, P. Bogdanoff, J. Maruyama, T. Nagaoka, A. Garsuch, J. R. Dahn, T. Olson, S. Pylypenko, P. Atanassov and E. A. Ustinov, 'Cross-laboratory experimental study of non-noble-metal electrocatalysts for the oxygen reduction reaction', ACS Appl. Materials & Interfaces, 1, 1623 (2009). https://doi.org/10.1021/am900219g
  27. D. Villers, X. Jacques-Bedard, and J. P. Dodelet, 'Febased catalysts for oxygen reduction in PEM fuel cells: Pretreatment of the carbon support', J. Electrochem. Soc., 151, A1507 (2004). https://doi.org/10.1149/1.1781611
  28. G. Wu, K. Artyushkova, M. Ferrandon, A.J. Kropf, D. Myers and P. Zelenay, 'Performance durability of polyaniline-derived non-precious cathode catalysts', ECS Trans., 25, 1299 (2009)
  29. R. Bashyam and P. Zelenay, 'A class of non-precious metal composite catalysts for fuel cells', Nature, 443, 63 (2006). https://doi.org/10.1038/nature05118
  30. S. Khasim, S. C. Raghavendra, M. Revanasiddappa, K. C. Sajjian, M. Lakshmi and M. Faisal, 'Synthesis, characterization and magnetic properties of polyaniline/$\gamma$- $Fe_{2}O_{3}$ composites', Bull. Mater. Sci., 34, 1557 (2011). https://doi.org/10.1007/s12034-011-0358-z
  31. M. Carmo, A. R. dos Santos, J. G. R. Poco, and M. Linardi, 'Physical and electrochemical evaluation of commercial carbon black as electrocatalysts supports for DMFC applications', J. Power Sources, 173, 860 (2007). https://doi.org/10.1016/j.jpowsour.2007.08.032
  32. G. P. Glaspell, P. W. Jagodzinski, and A. Manivannan, 'Formation of cobalt nitrate hydrate, cobalt oxide, and cobalt nanoparticles using laser vaporization controlled condensation', J. Phys. Chem. B, 108, 9604 (2004). https://doi.org/10.1021/jp0370831
  33. U. A. Paulus, T. J. Schmidt, H.A. Gasteiger, and R. J. Behm, 'Oxygen reduction on a high-surface area Pt/ Vulcan carbon catalyst: a thin-film rotating ring-disk electrode study', J. Electroanal. Chem., 495, 134 (2001). https://doi.org/10.1016/S0022-0728(00)00407-1
  34. V. Prabhakaran, C. G. Arges, and V. Ramani, 'Investigation of polymer electrolyte membrane chemical degradation and degradation mitigation using in situ fluorescence spectroscopy', PNAS, 109, 1029 (2012). https://doi.org/10.1073/pnas.1114672109