DOI QR코드

DOI QR Code

Application of Unburned Carbon Produced from Seochun Power Plant

서천화력발전소 매립 석탄재에서 분리한 미연탄소의 재활용 방안

  • Lee, Sujeong (Mineral Resources Research Division, Korea Institute of Geoscience and Mineral Resources) ;
  • Cho, Seho (University of Science & Technology) ;
  • Lee, Young-Seak (University of Science & Technology) ;
  • An, Eung-Mo (Mineral Resources Research Division, Korea Institute of Geoscience and Mineral Resources) ;
  • Cho, Sung-Baek (Mineral Resources Research Division, Korea Institute of Geoscience and Mineral Resources)
  • 이수정 (한국지질자원연구원 광물자원연구본부) ;
  • 조세호 (충남대학교 바이오응용화학과) ;
  • 이영석 (충남대학교 바이오응용화학과) ;
  • 안응모 (한국지질자원연구원 광물자원연구본부) ;
  • 조성백 (한국지질자원연구원 광물자원연구본부)
  • Received : 2013.11.05
  • Accepted : 2013.12.24
  • Published : 2014.02.28

Abstract

Feasibility of utilizing unburned carbon residue in coal ash as a potential precursor for the production of activated carbon was assessed to seek for solution to recycle unburned carbon residue. The unburned carbon concentrate generated from the 4 stages of cleaner flotation has a grade of 87% carbon. The crystalline impurities in the concentrate included quartz and mullite. Unburned carbon had a low specific surface area of $10m^2/g$, which might be related to a high degree of coalification of domestic anthracite coal. Carbon particles were mostly porous and have a turbostratic structure. When 1g of carbon was activated with 6g of KOH powder, the highest specific surface area value of $670m^2/g$ was achieved. Low wettability of unburned carbon particles, which was resulted from high temperature combustion in a boiler, might cause poor pore formation when they were activated by KOH solution. The activated carbon produced in this study developed micropores, with an equivalent quality of general-purpose activated carbon made from coal. Hence, it is concluded that chemically treated unburned carbon can be used for water purification or an alternative to carbon black as it is.

폐자원으로 분류되는 석탄재의 미연탄소를 경제적으로 재활용하기 위한 방안을 모색하기 위하여, 서천화력발전소 매립 석탄재로부터 미연탄소를 분리한 후 활성탄소 제조가능성을 평가하였다. 정선부선을 4단계 실시하여 얻어진 미연탄소 정광의 고정탄소 품위는 87%로 얻어졌다. 미연탄소 정광에 포함된 결정질 불순물로는 주로 석영과 뮬라이트가 존재하였다. 화학적 활성화 전 미연탄소의 비표면적은 $10m^2/g$로 매우 낮았으며, 이는 국내 무연탄의 높은 탄화도와 관련되는 것으로 추측되었다. 또한 미연탄소는 대체로 다공성이며 결정학적으로는 터보스트래틱 구조를 갖고 있었다. 미연탄소 1 g과 KOH 6 g 을 혼합하여 활성화시킨 경우 얻어진 비표면적값이 $670m^2/g$로 가장 높았으며 미세공이 발달된 것을 확인하였다. KOH 용액을 사용한 경우 질소흡착량이 분말상 활성화 시료보다 낮게 나타난 것은 탄소입자의 젖음성 및 함침성이 낮은 때문으로 추측되었다. 본 실험에서 제조한 활성탄소는 미세공 분포가 높은 기능성 활성탄소의 세공특성을 보이며, 범용의 활성탄소에 준하는 비표면적값을 나타내 기존의 석탄계 활성탄소보다 우수하며 회분 함량도 적정 수준이었다. 따라서 공정의 경제성과 미연탄소 자체의 특성을 고려하여, 정수용 활성탄소 대체재나 혹은 카본블랙 대체용으로 재활용하는 것이 가능할 것으로 판단된다.

Keywords

References

  1. Baltrus, J.P., Wells, A.W., Fauth, D.J., Diehl, J.R., and White, C.M., 2001 : Characterization of carbon concentrates from coal-combustion fly ash, Energ. Fuels, 15, pp. 455-462. https://doi.org/10.1021/ef000201o
  2. Wang, S., Ma, Q., and Zhu, Z.H., 2009 : Characteristics of unburned carbons and their application for humic acid removal from water, Fuel Process. Technol., 90, pp. 375-380 https://doi.org/10.1016/j.fuproc.2008.10.010
  3. Flagan, R.C. and Seinfeld, J.H., 1988 : Chap. 6 Particle formation in combustion. in Fundamentals of air pollution engineering, Prentice Hall, Engliewood Cliffs, NJ, US.
  4. Kulaots, I., Hurt, R.H., and Suuberg, E.M., 2004 : Size distribution of unburned carbon in coal fly ash and its implications, Fuel, 83, pp. 223-230. https://doi.org/10.1016/S0016-2361(03)00255-2
  5. Ha, T-H, Muralidharan, S., Bae, J-H, Ha, Y-C, Lee, H-G, Park, K-W, and Kim, D-K, 2005 : Effect of unburnt carbon on the corrosion performance of fly ash cement mortar, Constr. Build. Mater., 19(7), pp. 509-515. https://doi.org/10.1016/j.conbuildmat.2005.01.005
  6. Hurt, R.H., Davis, K.A., Yang, N. Y. C., Headley, T.J., and Mitchell, G.D., 1995 : Residual carbon from pulverizedcoal- fired boilers 2. Morphology and physicochemical properties, Fuel 74(9), pp. 1297-1306. https://doi.org/10.1016/0016-2361(95)00100-J
  7. Hower, J.C., Graham, U.M., Wild, G.D., 1995 : Petrographic characterization of high-carbon fly ash samples from Kentucky power stations, Proc. of the 11th International Symposium on Use and Management of Coal Combustion Byproducts, 15-19 January 1995, Orlando, FL, published by Electric Power Research Institute, EPRI TR-10467-V2, pp. 62-1-62-12.
  8. Maybury, J.J. 2007 : Investigation of the stress induced properties of coke during carbonization, MSc Thesis, West Virginia University, pp. 95.
  9. Baek, I-H, Bin, H-S, Roo, W-H, Kim, T-Y, and Kim, B-M, 1999 : Manufacture of adsorbent from fly-ash and anthracite, J. Korean Ind. Eng. Chem., 10(4), pp. 543-547.
  10. Lee, Y-S, 2004 : Porous carbon, Physics & High Technology, July/August, pp. 18-23.
  11. Evans, M.J.B., Halliop, E., MacDonal, J.A.F., 1999 : The production of chemically-activated carbon, Carbon, 37, pp. 269-274. https://doi.org/10.1016/S0008-6223(98)00174-2
  12. Kijm, J-H, Bae, T-S, and Lee, Y-S, 2013 : Biosensor electrode manufacturing technology using nano-carbon materials,, Appl. Chem. Eng., 24(2) pp. 113-120.
  13. Gruber, T., Zerda, T.W., and Gerspacher, M., 1994 : Raman studies of heat-treated carbon blacks, Carbon, 32, pp. 1377-1382. https://doi.org/10.1016/0008-6223(94)90125-2
  14. Ungar, T., Gubicza, J., Ribarik, G., Pantea, C., and Zerda, T.W., 2002 : Microstructure of carbon blacks determined by X-ray diffraction profile analysis, Carbon, 40, pp. 929-937. https://doi.org/10.1016/S0008-6223(01)00224-X
  15. Milenkova, K.S., Borrego, A.G., Alvarez, D., Xiberta, J., and Menendez, R., 2003 : Tracing the origin of unburned carbon in fly ashes from coal blends, Energ. Fuels, 17, pp. 1222-1232. https://doi.org/10.1021/ef0300388
  16. Maroto-Valer, M., Taulbee, D.N., Schobert, H.H., Hower J.C., and Andresen, J.M., 1999: Use of unburned carbon in fly ash precursor for the development of activated carbons, Proc. of International Ash Utilization Symposium, Center for Applied Energy Research, University of Kentucky, Paper#19, 18-20 Oct 1999, Printed in the US.
  17. Hill, R.L., Sarkar, S.L., Rathbone, R.F., and Hower, J.C., 1997 : An examination of fly ash carbon and its interactions with air entraining agent, Cem. Concr. Res., 27, pp. 193-204. https://doi.org/10.1016/S0008-8846(97)00008-2
  18. Kulaots, I., Aarna, I., Callejo, M., Hurt, R.H., and Suuberg, E.M., 2002 : Development of porosity during coal char combustion, Proceedings of the Combustion Institute, 29, pp. 495-501.
  19. Malhotra, V.M., Valimbe, P.S., and Wright, M.A., 2000 : Fabrication of automotive brake composites from unburned carbon, ACS Division of Fuel Chemistry Preprints, 45, pp. 504-508.

Cited by

  1. 고무증량재 및 플라스틱 충진재의 대체재로 UC와 CM의 재활용 vol.27, pp.1, 2014, https://doi.org/10.7464/ksct.2021.27.1.24
  2. Pretreatment method for the utilization of the coal ash landfilled in ash ponds vol.153, pp.None, 2014, https://doi.org/10.1016/j.psep.2021.07.013