• Title/Summary/Keyword: 브롬화 리튬

Search Result 3, Processing Time 0.017 seconds

Effect of Lithium Bromide on Chitosan/Fibroin Blend (키토산/피브로인 블렌드에 있어서 브롬화 리튬의 효과)

  • Kim, Hong-Sung;Park, Sang-Min;Yoon, Sang-Jun;Hwang, Dae-Youn;Jung, Young-Jin
    • Polymer(Korea)
    • /
    • v.33 no.5
    • /
    • pp.509-513
    • /
    • 2009
  • For examining an effect of lithium bromide on structure and property of chitosan/fibroin blend, we investigated the structural characteristic of chitosan/fibroin blend films using solution with lithium bromide which was removed during a casting. The chitosan/fibroin blend formed a complex with the dissolved bromine/lithium ions. The crystalline phase of the complex was found in the blend film at LiBr concentration of 0.6 mol/L. The degree of crystallization was decreased with increasing the concentration of LiBr. The hydrated crystalline phase of chitosan was formed in the blend film that lithium bromide was removed in the process of casting by neutralization and osmotic action. The crystallinity of this film was increased largely as compared with that of the film without lithium bromide. The complexed blend film formed hydrogel absorbing plenty of water.

Selective Reduction on Halides with Lithium Borohydride in the Multifunctional Compounds (수소화 붕소리튬을 이용한 다중작용기를 가진 화합물에서 할라이드의 선택환원)

  • Byung Tae Cho;Nung Min Yoon
    • Journal of the Korean Chemical Society
    • /
    • v.27 no.1
    • /
    • pp.46-52
    • /
    • 1983
  • Selective reduction of halide (Br, I) with lithium borohydride in halogen compounds containing chloro, nitro, ester and nitrile groups was achieved satisfactorily. 1-Bromo-4-chlorobutane was reduced to 1-chlorobutane in 96% yield and the reduction of p-nitrobenzyl bromide gave p-nitrotoluene in 98% yield. However, the selectivity on the reduction of ethyl 3-iodopropionate and 4-bromobutyronitrile required the presence of equimolar pyridine to give good yield of ethyl propionate (93%) and n-butyronitrile (88%), respectively. In competitive reduction of 1-bromoheptane and 2-bromoheptane, lithium borohydride reduced 1-bromoheptane preferentially in the molar ratio of 93:7.

  • PDF

The Influence of Impurities in Room Temperature Ionic Liquid Electrolyte for Lithium Ion Batteries Containing High Potential Cathode (고전압 리튬이차전지를 위한 LiNi0.5Mn1.5O4 양극용 전해질로써 상온 이온성 액체 전해질의 불순물 효과에 관한 연구)

  • Kim, Jiyong;Tron, Artur V.;Yim, Taeeun;Mun, Junyoung
    • Journal of the Korean Electrochemical Society
    • /
    • v.18 no.2
    • /
    • pp.51-57
    • /
    • 2015
  • We report the effect of the impurities including water and bromide in the propylmethylpyrrolidinium bis(trifluoromethanesulfonyl)imide (PMPyr-TFSI) on the electrochemical performance of lithium ion batteries. The several kinds of PMPyr-TFSI electrolytes with different amount of impurities are applied as the electrolyte to the cell with the high potential electrode, $LiNi_{0.5}Mn_{1.5}O_4$ spinel. It is found that the impurities in the electrolytes cause the detrimental effect on the cell performance by tracing the cycleability, voltage profile and Coulombic efficiency. Especially, the polarization and Coulombic efficiency go to worse by both impurities of water and bromide, but the cycleability was not highly influenced by bromide impurity unlike the water impurity.