키토산/피브로인 블렌드에 있어서 브롬화 리튬의 효과

Effect of Lithium Bromide on Chitosan/Fibroin Blend

  • 김홍성 (부산대학교 바이오소재공학과) ;
  • 박상민 (부산대학교 바이오소재공학과) ;
  • 윤상준 (부산대학교 바이오소재공학과) ;
  • 황대연 (부산대학교 바이오소재공학과) ;
  • 정영진 (부산대학교 바이오소재공학과)
  • Kim, Hong-Sung (Department of Biomaterials Engineering, Pusan National University) ;
  • Park, Sang-Min (Department of Biomaterials Engineering, Pusan National University) ;
  • Yoon, Sang-Jun (Department of Biomaterials Engineering, Pusan National University) ;
  • Hwang, Dae-Youn (Department of Biomaterials Engineering, Pusan National University) ;
  • Jung, Young-Jin (Department of Biomaterials Engineering, Pusan National University)
  • 발행 : 2009.09.25

초록

키토산/피브로인 블렌드의 구조와 물성에 미치는 브롬화 리튬의 효과를 고찰하기 위하여, 브롬화 리튬을 함유한 용액으로 성형한 키토산/피브로인 블렌드 필름과 성형 시 브롬화 리튬을 제거한 블렌드 필름의 구조적 특성을 조사하였다. 키토산/피브로인 블렌드는 용해된 브롬/리튬이온과 더불어 복합체를 형성하였고, 0.6 mol/L의 LiBr 농도에서 X-선 회절에 의한 복합체의 결정성을 보였으며, 이온 농도가 증가할수록 결정성은 감소되었다. 복합체 용액으로부터 고화 시중화 및 삼투작용으로 브롬화 리튬을 제거한 블렌드 필름의 결정은 키토산의 수화형 결정상을 형성하였으며, 브롬화 리튬을 처리하지 않은 것에 비하여 결정성이 크게 증가하였다. 복합체에 의한 블렌드 필름은 자중의 수십 배의 물을 흡수하여 수화겔을 형성하였다.

For examining an effect of lithium bromide on structure and property of chitosan/fibroin blend, we investigated the structural characteristic of chitosan/fibroin blend films using solution with lithium bromide which was removed during a casting. The chitosan/fibroin blend formed a complex with the dissolved bromine/lithium ions. The crystalline phase of the complex was found in the blend film at LiBr concentration of 0.6 mol/L. The degree of crystallization was decreased with increasing the concentration of LiBr. The hydrated crystalline phase of chitosan was formed in the blend film that lithium bromide was removed in the process of casting by neutralization and osmotic action. The crystallinity of this film was increased largely as compared with that of the film without lithium bromide. The complexed blend film formed hydrogel absorbing plenty of water.

키워드

참고문헌

  1. K. Ogawa, T. Yui, and K. Okuyama, Int. J. Biol. Macromol., 34, 1 (2004) https://doi.org/10.1016/j.ijbiomac.2003.11.002
  2. S. J. Park and C. H. Kim, Tissue Eng. Regen. Med., 4, 471 (2007)
  3. C. Shi, Y. Zhu, X. Ran, M. Wang, Y. Su, and T. Cheng, Journal of Surgical Research, 133, 185 (2006) https://doi.org/10.1016/j.jss.2005.12.013
  4. C. H. Kim, H. S. Park, Y. J. Gin, Y. Son, S. Lim, Y. J. Choi, K. Park, and C. W. Park, Macromol. Res., 12, 367 (2004) https://doi.org/10.1007/BF03218413
  5. P. J. VandeVord, H. W. T. Matthew, S. P. DeSilva, L. Mayton, B. Wu, and P. H. Wooley, J. Biomed. Mater. Res., 59, 585 (2002) https://doi.org/10.1002/jbm.1270
  6. M. Ishihara, K. Nakanishi, K. Ono, M. Sato, M. Kikuchi, Y. Saito, H. Yura, T. Matsui, H. Hattori, M. Uenoyama, and A. Kurita, Biomaterials, 23, 833 (2002) https://doi.org/10.1016/S0142-9612(01)00189-2
  7. F. L. Mi, Y. C. Tan, H. F. Liang, and H. W. Sung, Biomaterials, 23, 181 (2002) https://doi.org/10.1016/S0142-9612(01)00094-1
  8. J. H. Park, Y. W. Cho, H. Chung, I. C. Kwon, and S. Y. Jeong, Biomacromolecules, 4, 1087 (2003) https://doi.org/10.1021/bm034094r
  9. J. H. Park, S. Kwon, J. Nam, R. Park, H. Chung, S. B. Seo, I. Kim, I. C. Kwon, and S. Y. Jeong, J. Control. Release, 95, 579 (2004) https://doi.org/10.1016/j.jconrel.2003.12.020
  10. K. Okuyama, K. Noguchi, M. Kanenari, T. Egawa, K. Osawa, and K. Ogawa, Carbohyd. Polym., 41, 237 (2000) https://doi.org/10.1016/S0144-8617(99)00142-3
  11. N. C. Braier and R. A. Jishi, J. Mol. Struct. Theochem, 499, 51 (2000) https://doi.org/10.1016/S0166-1280(99)00288-2
  12. M. Hasegawa, A. Isogai, F. Onabe, M. Usuda, and R. H. Atalla, J. Appl. Polym. Sci., 45, 1873 (1992) https://doi.org/10.1002/app.1992.070451101
  13. N. Shanmugasundaram, P. Ravichandran, P. N. Reddy, N. Ramamurty, S. Pal, and K. P. Rao, Biomaterials, 22, 1943 (2001) https://doi.org/10.1016/S0142-9612(00)00220-9
  14. K. D. Yao, J. Liu, G. X. Cheng, X. D. Lu, H. L. Tu, and J. A. L. D. Silva, J. Appl. Polym. Sci., 60, 279 (1996) https://doi.org/10.1002/(SICI)1097-4628(19960411)60:2<279::AID-APP16>3.0.CO;2-0
  15. R. M. Silva, C. Elvira, J. F. Mano, J. S. Roman, and R. L. Reis, J. Mater. Sci.- Mater. Med., 15, 523 (2004) https://doi.org/10.1023/B:JMSM.0000021132.60475.79
  16. Z. Li, H. R. Ramay, K. D. Hauch, D. Xiao, and M. Zhang, Biomaterials, 26, 3919 (2005) https://doi.org/10.1016/j.biomaterials.2004.09.062
  17. I. Arvanitoyannis, I. Kolokuris, A. Nakayama, N. Yamamoto, and S. Aiba, Carbohyd. Polym., 34, 9 (1997) https://doi.org/10.1016/S0144-8617(97)00089-1
  18. T. Koyano, N. Minoura, M. Nagura, and K. Kobayashi, J. Biomed. Mater. Res., 39, 486 (1998) https://doi.org/10.1002/(SICI)1097-4636(19980305)39:3<486::AID-JBM20>3.0.CO;2-7
  19. D. A. Devi, B. Smitha, S. Sridhar, and T. M. Aminabhavi, J. Membrane Sci., 280, 45 (2006) https://doi.org/10.1016/j.memsci.2006.01.003
  20. I. Olabarrieta, D. Forsstrom, U. W. Gedde, and M. S. Hedenqvist, Polymer, 42, 4401 (2001) https://doi.org/10.1016/S0032-3861(00)00680-7
  21. Q. Chen, Y. Hu, Y. Chen, X. Jiang, and Y. Yang, Macromol. Biosci., 5, 993 (2005) https://doi.org/10.1002/mabi.200500098
  22. H. S. Kim, J. T. Kim, Y. J. Jung, S. C. Ryu, H. J. Son, and Y. G. Kim, Macromol. Res., 15, 65 (2007) https://doi.org/10.1007/BF03218754
  23. H. S. Kim, J. T. Kim, S. C. Ryu, and J. H. Kim, Biomaterials Research, 11, 96 (2007)
  24. H. Y. Kweon, I. C. Um, and Y. H. Park, Polymer, 42, 6651 (2001) https://doi.org/10.1016/S0032-3861(01)00104-5
  25. D. K. Kim and H. S. Kim, Polymer(Korea), 29, 408 (2005)
  26. S. J. Park, K. Y. Lee, W. S. Ha, and S. Y. Park, J. Appl. Polym. Sci., 74, 2571 (1999) https://doi.org/10.1002/(SICI)1097-4628(19991209)74:11<2571::AID-APP2>3.0.CO;2-A
  27. H. Kweon, H. C. Ha, I. C. Um, and Y. H. Park, J. Appl. Polym. Sci., 80, 928 (2001) https://doi.org/10.1002/app.1172
  28. G. D. Kang, K. H. Lee, C. S. Ki, J. H. Nahm, and Y. H. Park, Macromol. Res., 12, 534 (2004) https://doi.org/10.1007/BF03218439
  29. X. Chen, W. Li, W. Zhong, Y. Lu, and T. Yu, J. Appl. Polym. Sci., 65, 2257 (1997) https://doi.org/10.1002/(SICI)1097-4628(19970912)65:11<2257::AID-APP23>3.0.CO;2-Z