• Title/Summary/Keyword: 분수 이해

Search Result 104, Processing Time 0.019 seconds

A Construction of 'Decimal Fraction' Unit of Elementary Mathematics Textbook and Analysis of Students' State of Understanding Based on Measurement Activity (초등수학에서 측정활동에 기반한 소수의 학습.지도 방안 및 학생의 이해 실태 분석)

  • Kim, Eun Jung;Kang, Heung Kyu
    • Journal of Elementary Mathematics Education in Korea
    • /
    • v.18 no.1
    • /
    • pp.37-62
    • /
    • 2014
  • In this thesis, we inquire into teaching method of decimal fraction concept in elementary mathematics education based on measurement activity. For this purpose, our research tasks are as follows: First, we design a experimental learning-teaching plan of 'decimal fraction' unit in 4th grade textbook and verify its effect. Second, after teaching experiment using experimental learning-teaching plan, we analyze the student's status of understanding about decimal fraction concept. As stated above, we have performed teaching experiment which is ruled by new lesson design and analysed the effects of teaching experiment. Through this study, we obtained the following results. First, introduction of decimal fraction based on measurement activity promotes student's understanding of measuring number and decimal notation. Second, operator concept of decimal fraction is widely used in daily life. Its usage is suitable for elementary mathematics education within the decimal notation system. Third, a teaching method of times concepts using place value expansion of decimal fraction is more meaningful and has less possibility of misunderstanding than mechanical shift of decimal point. Fourth, teaching decimal fraction through the decimal expansion helps students with understanding of digit 0 contained in decimal fraction, comparing of size and place value. Fifth, students have difficulties in understanding conversion process of decimal fraction into decimal notation system using measurement activity. It can be done easily when fraction is used. However, that is breach to curriculum. It is necessary to succeed research for this.

  • PDF

대구분지 북부 팔공산 지역의 지질에 따른 지형발달의 특성

  • 조우영;윤순옥;황상일
    • Proceedings of the KGS Conference
    • /
    • 2002.11a
    • /
    • pp.97-100
    • /
    • 2002
  • 지표의 기복은 암석의 차별적 풍화와 침식을 반영하므로, 기복의 형성에서 암석이 차지하는 몫을 이해하는 것은 중요하며 이 문제는 근대지형학의 발달 초기부터 중요하게 다루어져 왔다(권혁재, 2002).(Picture Omitted) 대구분지 북쪽 분수계를 이루고 있는 팔공산의 기반암은 중생대 백악기 말부터 제 3기초기에 걸쳐 백악기 퇴적암인 경상누층군을 관입하여 형성된 불국사화강암이다.(중략)

  • PDF

The Impact of Children's Understanding of Fractions on Problem Solving (분수의 하위개념 이해가 문제해결에 미치는 영향)

  • Kim, Kyung-Mi;Whang, Woo-Hyung
    • The Mathematical Education
    • /
    • v.48 no.3
    • /
    • pp.235-263
    • /
    • 2009
  • The purpose of the study was to investigate the influence of children's understanding of fractions in mathematics problem solving. Kieren has claimed that the concept of fractions is not a single construct, but consists of several interrelated subconstructs(i.e., part-whole, ratio, operator, quotient and measure). Later on, in the early 1980s, Behr et al. built on Kieren's conceptualization and suggested a theoretical model linking the five subconstructs of fractions to the operations of fractions, fraction equivalence and problem solving. In the present study we utilized this theoretical model as a reference to investigate children's understanding of fractions. The case study has been conducted with 6 children consisted of 4th to 5th graders to detect how they understand factions, and how their understanding influence problem solving of subconstructs, operations of fractions and equivalence. Children's understanding of fractions was categorized into "part-whole", "ratio", "operator", "quotient", "measure" and "result of operations". Most children solved the problems based on their conceptual structure of fractions. However, we could not find the particular relationships between children's understanding of fractions and fraction operations or fraction equivalence, while children's understanding of fractions significantly influences their solutions to the problems of five subconstructs of fractions. We suggested that the focus of teaching should be on the concept of fractions and the meaning of each operations of fractions rather than computational algorithm of fractions.

  • PDF

An Analysis of the Relationship between Students' Understanding and their Word Problem Solving Strategies of Multiplication and Division of Fractions (분수의 곱셈과 나눗셈에 대한 학생의 이해와 문장제 해결의 관련성 분석)

  • Kim, Kyung-Mi;Whang, Woo-Hyung
    • The Mathematical Education
    • /
    • v.50 no.3
    • /
    • pp.337-354
    • /
    • 2011
  • The purpose of the study was to investigate how students understand multiplication and division of fractions and how their understanding influences the solutions of fractional word problems. Thirteen students from 5th to 6th grades were involved in the study. Students' understanding of operations with fractions was categorized into "a part of the parts", "multiplicative comparison", "equal groups", "area of a rectangular", and "computational procedures of fractional multiplication (e.g., multiply the numerators and denominators separately)" for multiplications, and "sharing", "measuring", "multiplicative inverse", and "computational procedures of fractional division (e.g., multiply by the reciprocal)" for divisions. Most students understood multiplications as a situation of multiplicative comparison, and divisions as a situation of measuring. In addition, some students understood operations of fractions as computational procedures without associating these operations with the particular situations (e.g., equal groups, sharing). Most students tended to solve the word problems based on their semantic structure of these operations. Students with the same understanding of multiplication and division of fractions showed some commonalities during solving word problems. Particularly, some students who understood operations on fractions as computational procedures without assigning meanings could not solve word problems with fractions successfully compared to other students.

An Analysis of Students' Understanding of Operations with Whole Numbers and Fractions (자연수와 분수 연산에 대한 학생들의 이해 분석)

  • Kim, Kyung-Mi;Whang, Woo-Hyung
    • The Mathematical Education
    • /
    • v.51 no.1
    • /
    • pp.21-45
    • /
    • 2012
  • The purpose of the study was to investigate how students understand each operations with whole numbers and fractions, and the relationship between their knowledge of operations with whole numbers and conceptual understanding of operations on fractions. Researchers categorized students' understanding of operations with whole numbers and fractions based on their semantic structure of these operations, and analyzed the relationship between students' understanding of operations with whole numbers and fractions. As the results, some students who understood multiplications with whole numbers as only situations of "equal groups" did not properly conceptualize multiplications of fractions as they interpreted wrongly multiplying two fractions as adding two fractions. On the other hand, some students who understood multiplications with whole numbers as situations of "multiplicative comparison" appropriately conceptualize multiplications of fractions. They naturally constructed knowledge of fractions as they build on their prior knowledge of whole numbers compared to other students. In the case of division, we found that some students who understood divisions with whole numbers as only situations of "sharing" had difficulty in constructing division knowledge of fractions from previous division knowledge of whole numbers.

An Analysis of Pre-service Teachers' Pedagogical Content Knowledge about Decimal Calculation (소수연산에 관한 예비초등교사의 교수내용지식 분석)

  • Song, Keun-Young;Pang, Jeong-Suk
    • Journal of Elementary Mathematics Education in Korea
    • /
    • v.12 no.1
    • /
    • pp.1-25
    • /
    • 2008
  • The purpose of this study was to identify pre-service teachers' Pedagogical Content Knowledge (PCK) about decimal calculation. A written questionnaire was developed dealing with decimal calculation. A total of 152 pre-service teachers from 3 universities were selected for this study; they had taken an elementary mathematics teaching method course and had no teaching experience. The results were as follows: First, with regard to the method of decimal calculation, most pre-service teachers were familiar with algorithms introduced in the textbook. But with regard to the meaning of decimal calculations, they had difficulties in understanding decimal multiplication or decimal division with decimal number. Second, pre-service teachers recognized reasons of errors as well as errors patterns that student might make. But this recognition was limited mainly to errors related to natural number calculation. Third, pre-service teachers frequently commented about decimals algorithms, picture models, the meanings of decimal calculations, and connections to natural number calculations. Many of them represented the meanings of decimal calculations through picture models as to help students' understanding, while they just mentioned algorithms or treated decimal calculation as natural number calculations with decimal point.

  • PDF

Development of Korean Preschoolers' Understanding of Fractional Concepts II : Proportional Reasoning for Continuous and Discontinuous Quantities (한국 유아들의 분수개념에 대한 이해의 발달 II : 연속적 양과 비연속적 양에서의 비율추리)

  • Park, Young-Shin
    • Korean Journal of Child Studies
    • /
    • v.26 no.6
    • /
    • pp.161-171
    • /
    • 2005
  • In Experiment 1, 4- and 5-year-olds were shown either continuous(i.e., pizza) or discontinuous Stimuli(i.e., biscuit) by the experimenter. After a proportion(e.g., 2/8, 4/8, or 6/8) was removed, children were asked to remove an equivalent proportion. Whereas 4-year-olds proportional reasoning was correct only when they shared the same stimulus with the experimenter, 5-year-olds reasoned correctly regardless whether or not they shared the stimulus with the experimenter. In Experiment 2, where the discontinuous stimulus was changed, 4-year-olds also made correct proportional reasoning even when their stimulus was different from the experimenter's. Contrary to other studies, quantity didn't affect children's proportional reasoning except the proportion 1/4, where problems with discontinuous quantity were solved more successfully than problems with continuous quantity.

  • PDF

The Type of Fractional Quotient and Consequential Development of Children's Quotient Subconcept of Rational Numbers (분수 몫의 형태에 따른 아동들의 분수꼴 몫 개념의 발달)

  • Kim, Ah-Young
    • Journal of Educational Research in Mathematics
    • /
    • v.22 no.1
    • /
    • pp.53-68
    • /
    • 2012
  • This paper investigated the conceptual schemes four children constructed as they related division number sentences to various types of fraction: Proper fractions, improper fractions, and mixed numbers in both contextual and abstract symbolic forms. Methods followed those of the constructivist teaching experiment. Four fifth-grade students from an inner city school in the southwest United States were interviewed eight times: Pre-test clinical interview, six teaching / semi-structured interviews, and a final post-test clinical interview. Results showed that for equal sharing situations, children conceptualized division in two ways: For mixed numbers, division generated a whole number portion of quotient and a fractional portion of quotient. This provided the conceptual basis to see improper fractions as quotients. For proper fractions, they tended to see the quotient as an instance of the multiplicative structure: $a{\times}b=c$ ; $a{\div}c=\frac{1}{b}$ ; $b{\div}c=\frac{1}{a}$. Results suggest that first, facility in recall of multiplication and division fact families and understanding the multiplicative structure must be emphasized before learning fraction division. Second, to facilitate understanding of the multiplicative structure children must be fluent in representing division in the form of number sentences for equal sharing word problems. If not, their reliance on long division hampers their use of syntax and their understanding of divisor and dividend and their relation to the concepts of numerator and denominator.

  • PDF

A study on the visual integrated model of the fractional division algorithm in the context of the inverse of a Cartesian product (카테시안 곱의 역 맥락에서 살펴본 분수 나눗셈 알고리즘의 시각적 통합모델에 대한 연구)

  • Lee, Kwangho;Park, Jungkyu
    • Education of Primary School Mathematics
    • /
    • v.27 no.1
    • /
    • pp.91-110
    • /
    • 2024
  • The purpose of this study is to explore visual models for deriving the fractional division algorithm, to see how students understand this integrated model, the rectangular partition model, when taught in elementary school classrooms, and how they structure relationships between fractional division situations. The conclusions obtained through this study are as follows. First, in order to remind the reason for multiplying the reciprocal of the divisor or the meaning of the reciprocal, it is necessary to explain the calculation process by interpreting the fraction division formula as the context of a measurement division or the context of the determination of a unit rate. Second, the rectangular partition model can complement the detour or inappropriate parts that appear in the existing model when interpreting the fraction division formula as the context of a measurement division, and can be said to be an appropriate model for deriving the standard algorithm from the problem of the context of the inverse of a Cartesian product. Third, in the context the inverse of a Cartesian product, the rectangular partition model can naturally reveal the calculation process in the context of a measurement division and the context of the determination of a unit rate, and can show why one division formula can have two interpretations, so it can be used as an integrated model.

The Use of Traditional Algorithmic Versus Instruction with Multiple Representations: Impact on Pre-Algebra Students' Achievement with Fractions, Decimals, and Percent (전통적 알고리즘 교수법과 다양한 표상을 활용한 교수법의 비교: 분수, 소수, 퍼센트 내용을 중심으로)

  • Han, Sunyoung;Flores, Raymond;Inan, Fethi A.;Koontz, Esther
    • School Mathematics
    • /
    • v.18 no.2
    • /
    • pp.257-275
    • /
    • 2016
  • The purpose of this study was to investigate the impact of multiple representations on students' understanding of fractions, decimals, and percent. The instructional approach integrating multiple representations was compared to traditional algorithmic instruction, a form of direct instruction. To examine and compare the impact of multiple representations instruction with traditional algorithmic instruction, pre and post tests consisting of five similar items were administered with 87 middle school students. Students' scores in these two tests and their problem solving processes were analyzed quantitatively and qualitatively. The quantitative results indicated that students taught by traditional algorithmic instruction showed higher scores on the post-test than students in the multiple representations group. Furthermore, findings suggest that instruction using multiple representations does not guarantee a positive impact on students' understanding of mathematical concepts. Qualitative results suggest that the limited use of multiple representations during a class may have hindered students from applying their use in novel problem situations. Therefore, when using multiple representations, teachers should employ more diverse examples and practice with multiple representations to help students to use them without error.