• Title/Summary/Keyword: 부정류 실험

Search Result 56, Processing Time 0.03 seconds

Adaptive Detection of Unusual Heartbeat According to R-wave Distortion on ECG Signal (심전도 신호에서 R파 왜곡에 따른 적응적 특이심박 검출)

  • Lee, SeungMin;Ryu, ChunHa;Park, Kil-Houm
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.9
    • /
    • pp.200-207
    • /
    • 2014
  • Arrhythmia electrocardiogram signal contains a specific unusual heartbeat with abnormal morphology. Because unusual heartbeat is useful for diagnosis and classification of various diseases, such as arrhythmia, detection of unusual heartbeat from the arrhythmic ECG signal is very important. Amplitude and kurtosis at R-peak point and RR interval are characteristics of ECG signal on R-wave. In this paper, we provide a method for detecting unusual heartbeat based on these. Through the value of the attribute deviates more from the average value if unusual heartbeat is more certainly, the proposed method detects unusual heartbeat in order using the mean and standard deviation. From 15 ECG signals of MIT-BIH arrhythmia database which has R-wave distortion, we compare the result of conventional method which uses the fixed threshold value and the result of proposed method. Throughout the experiment, the sensitivity is significantly increased to 97% from 50% using the proposed method.

Floodwave Propagation in Sinuous Channel with Compound Cross Sections (사행도를 가진 복합단면 하도에서의 홍수파특성)

  • Park, Jae-Hong;Han, Kun-Yeun;Cho, Hong-Je
    • Water for future
    • /
    • v.27 no.4
    • /
    • pp.95-104
    • /
    • 1994
  • The sinuosity model has been developed to simulate to developed to simulate the floodwave in meandering channels by solving the extended Saint-Venant equation with the Preissmann scheme. The suggested model is compared with three conventional floodplain routing methods in terms of governing equations, mass conservation error and floodwave analysis. The sinuosity model produces the mass conservation error of 1.5-1.8%, however the separate channel model produces 9.1% and 27.4% for sinuosity of 1.5 and 2.0, respectively. The model has been used to simulate flow in an idealized meandering river with a floodplain. The attenuation ratio and the travel time ratio are found to increase as the floodplain roughness and width increase and as the sinuosity factor decreases. The model is expected to contribute the floodwave analysis in sinuous channel with compound corss sections.

  • PDF

Effects of Operation of the Kyeongpo Retarding Basin on Flood Water Levelin Kyeongpo Lake (경포유수지 운영이 경포호의 홍수위에 미치는 영향)

  • Park, Sang Doeg;Lee, Seungkyu;Shin, Seung Sook;Yoon, Byung Man
    • Journal of Wetlands Research
    • /
    • v.18 no.4
    • /
    • pp.413-423
    • /
    • 2016
  • Effects of the design flood share of the Kyeongpo retarding basin, which has a function for flood control of the Kyeongpo river assigned to the Kyeongpo prickly water lily wetland, on the Kyeongpo lake and the downstream of Kyeongpo river were analyzed on the bassis of the hydraulic experiments and the numerical simulations using RMA-2 model. Reproducing a complex water flow system of the area of Kyeongpo lake, the unsteady flow simulations were performed. The data obtained in hydraulic experiments were used to determine parameters of the numerical model which simulated the flows for various flood scenarios in the downstream area of Kyeongpo river. With increasing the design flood share rates in the retarding basin, the water level was increased in the lake and is decreased in the river. The characteristics of flood flow interaction between Kyeongpo river and Kyeongpo lake were understood. These results may be used to management the Kyeongpo lake during flood season.

A Real Scale Experimental Study for Evaluation of Permissible Shear Stresses on Vegetation Mats (식생매트 허용 소류력 평가를 위한 실규모 실험 연구)

  • Lee, Du Han;Kim, Dong-Hee;Kim, Myounghwan;Rhee, Dong Sop
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.12
    • /
    • pp.6151-6158
    • /
    • 2012
  • By the activation of environment-friendly river works, application of vegetation mats is increasing, however, evaluation techniques for hydraulic stability of vegetation mats are not presented. This study is conducted to develop the objective test method for vegetation mats. Two kind of vegetation mats are tested by the real scale experiments, and hydraulic quantities are measured and analyzed to evaluate acting shear stresses. Roughness and shear stress are evaluated by 1 D non-uniform model. After each tests, changes in mat surfaces and sub-soil are evaluated, and from these evaluation, 3 types of mat surface damages and 2 types of sub-soil damages are presented. In the study, the case in which some damages in mat surface don't cause loss of sub-soil, is presented to be in the stable condition. Appling this stable condition and acting shear stresses, permissible shear stresses of vegetation mats are evaluated, and the results show that the reinforced mat with wire netting has more permissible shear stress.

Numerical Investgation of the Effect of Turbulent Flow on Fish Passing through Hydroturbine Draft Tube (수력터빈 드래프트관을 통과하는 물고기에 미치는 난류의 영향 수치모의)

  • Paik, Joong-Cheol
    • Journal of Korea Water Resources Association
    • /
    • v.38 no.5 s.154
    • /
    • pp.365-377
    • /
    • 2005
  • This paper presents numerical works carried out for developing an advanced computational framework for understanding injury- and mortality-inducing flow phenomena in hydropower facilities. Large-eddy simulation (LES) of a circular jet flow is carried out to help interpret the results of recent experiments that exposed live fish to the shear zone of a turbulent jet. The instantaneous flow field of LES is characterized by intense velocity, pressure, and vorticity fluctuations, which could exert forces and moments on a fish considerably larger than those exerted by the same fish exposed to the corresponding steady, time-averaged flow. In this study, also, unsteady modeling of flow in a hydroturbine draft tubewas carried out using a hybrid unsteady RANS/LES, so-called detached-eddy simulation (DES). Results from DES show that the potential for disorientation and excessive residence times of fish within the draft tube is certainly considerable.

A Two Dimensional in Bended Open Channel Flows (만곡수로에서 2차원 흐름해석)

  • Yoon, Sei Eui;Lee, Jong Tae;Lee, Won Hwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.6 no.1
    • /
    • pp.87-94
    • /
    • 1986
  • Under natural condition, many rivers had shallow and gently curved shape in plane. A two dimensional mathematical model of the flow was a very attractive one. The flow characteristics in bended open channels were analyzed. The mathematical model based on the mass and the momentum equation of the two-dimensional unsteady flow was developed by introducing finite difference method and the double sweep algorithm. For the purpose of the verification of this model, the modeling results were applied to the L.F.M flume and the I.I.H.R flume. The results had a good agreement with the experimental data of the flumes. The results could be more close to the experimental data by controlling Chezy Coefficients in order to reduce the effect of friction around side wall, and be studied the importance of the convective term. The water surface profile, the direction and scale of depth average mean velocity and the path of the thread of maximum velocity in bended open channels could be computed.

  • PDF

Analysis of Characteristics of Cohesive Sediment Settling (점착성 퇴적물의 침전 특성 분석)

  • Kim, Jong-Woo;Yoon, Sei-Eui;Lee, Jong-Tae
    • Journal of Korea Water Resources Association
    • /
    • v.38 no.2
    • /
    • pp.133-142
    • /
    • 2005
  • The settling concentration of fine suspended solid particles(alumina(Al$_2$O$_3$) and quartz(SiO$_2$)) is investigated with the physico-chemical effects(initial concentration, pH and NaCl). Laboratory tests have confirmed the significant influence of increasing initial concentration and salinity which can lead to flocculation due to the intermolecular attraction. Furthermore, the influence of the pH value on the concentration-time corves of alumina has been on firmed. Besides a numerical model to predict the behaviour of cohesive deposit under still water is analyzed by solving the unsteady one-dimensional diffusion-advection equation with a explicit, implicit, Crank-Nicolson and finite difference scheme. The model predicts the existence of an equilibrium concentration. Application of the model with implicit centered difference to data from settling experiments shows a similar distribution.

Performance Factors for Delaying Slope Failure through Hydraulic Experiments of Dam Overtopping (댐 월류 수리실험을 통한 사면붕괴지연 성능인자 도출)

  • Sung Woo, Lee;Dong Hyun Kim;Seung Oh Lee
    • Journal of Korean Society of Disaster and Security
    • /
    • v.17 no.2
    • /
    • pp.1-11
    • /
    • 2024
  • Most reservoirs in South Korea are earthen dams, mainly because they are cost-effective and easy to construct. However, earthen dams are highly vulnerable to seepage and overtopping, making them prone to sudden failure during excessive flooding. Such sudden failures can lead to a rapid increase in flood discharge, causing significant damage to downstream rivers and inhabited areas. This study investigates the effect of riprap placement on the slopes of earthen dams in delaying dam failure. Delaying the failure time is crucial as it allows more time for evacuation, significantly reducing potential casualties, which is essential from a disaster response perspective. Hydraulic experiments were conducted in a straight channel, using two different sizes of riprap for protection. Unlike previous studies, these experiments were performed under unsteady flow conditions to reflect the impact of rising water levels inside the dam. The target dam for the study was a cofferdam installed in a diversion tunnel. Experimental results indicated that the presence of riprap protection effectively prevented slope failure under the tested conditions. Without riprap protection, increasing the size of the riprap delayed the failure time. This delay can reduce peak discharge, mitigating damage downstream of the dam. Furthermore, these findings can serve as critical reference material for establishing emergency action plans (EAP) for reservoir failure.

Experimental Study of Collapse Delay Effect of Riprap on Dam Slope (사력댐 사석 보호공의 붕괴 지연 효과에 대한 실험 연구)

  • Jeong, Seokil;Kim, Seung Wook;Kim, Hong Taek;Lee, Seung Oh
    • Journal of Korean Society of Disaster and Security
    • /
    • v.11 no.1
    • /
    • pp.31-38
    • /
    • 2018
  • The 99.1% of small dam and most of the levees in Korea are soil dam which can be constructed with lower cost and less effort compared with ones made of concrete. However, they are so vulnerable to overflow. Sudden collapses of these strucrues lead to increase flow rate rapidly, which may cause catastrophic problems in downstream regions. In this study, the experimental study on the collapse delay effect of riprap that was laid on slope of soil levee was carried out. A prismatic rectangular open channel was used and three different sizes of the riprap were installed on slope of a scaled earth dam. A new formula for the collapse time of the levee with the installation of riprap was presented, using the previous researches and the dimensional analysis. In this process, an unsteady flow condition was considered to derive the deviation time of the riprap. And additional experiments were conducted to understand the effect of reinforcement of riprap, and it was found that the reinforcement of riprap was more effective than twice sizing of intial riprap. If the collapse time is delayed, EAP (Emergency Action Plan) and forecasting can greatly reduce the degree of flood damage. Also, it will be meaningful that the results of this study are used for river design.

Prediction MOdels for Channel Bed Evolution Due to Short Term Floods (단기간의 홍수에 의한 하상변동의 예측모형)

  • Pyo, Yeong-Pyeong;Sin, Cheol-Sik;Bae, Yeol-Ho
    • Journal of Korea Water Resources Association
    • /
    • v.30 no.6
    • /
    • pp.597-610
    • /
    • 1997
  • One-dimensional numerical models using finite difference methods for unsteady sediment transport on alluvial river channel are developed. The Preissmann implicit scheme and the Lax-Wendroff two-step explicit scheme with the Method of Characteristics for water motion and a forward time centered space explicit scheme for sediment motion are developed to simulate the sediment transport rate and the variation of channel bed level. The program correctness of each model is successfully verified using volume conservation tests. The sensitivity studies show that higher peak stage level, steeper channel slope and longer flooding duration produce more channel bed erosion. and median grain size, $D_{50}=0.4mm$ give maximum volume loss in this study. Finally, the numerical models are found to produce reasonable results from the various sensitivity tests which reveal that the numerical models have properly responded to the changes of each model parameter.

  • PDF