• Title/Summary/Keyword: 부엽식물

Search Result 31, Processing Time 0.035 seconds

Plant Resources of wetlands in Youngsan River Streams of Downtown in Gwangju Metropolitan City (광주광역시 도심 영산강 수계 습지의 식물자원)

  • Lim, Dong-Ok;Cho, Won-Cheol;Choi, Hyun-Woo
    • Journal of Wetlands Research
    • /
    • v.11 no.2
    • /
    • pp.17-28
    • /
    • 2009
  • The investigated Varcular plants in Youngsan River Streams of Downtown in Gwangju Metropolitan City consist of total 437 taxa: 2 forms, 49 varieties, 386 species, 265 genera, 91 families. Among 53 taxa of hydrophytes, emerged plants were 16taxa, floating-leaved plants were 10taxa, suvmerged plants were 10taxa, and free-floating plants were 3taxa and swamp plants were 14taxa. Based on the list of Rare and Endangered plants, 5taxa were recorded such as Hydrocharis dubia, Euryale Ferox, Penthorum chinense, Prunus yedoensis, Nymphoides coreana. And Korean endemic Plants were appeared as 5taxa: Poa annua, Forsythia koreana, Paulownia coreana, Galium koreanum, Aster koraiensis. From the specific plant species sorted by classes, class I has 10taxa, class II has 2taxa, class III has 2taxa, class IV has 3taxa, class V has 5taxa. Naturalized plant were listed as 62taxa: 15families, 44genera, 59species, 3varieties, and naturalization index was 14.19%. The ecosystem disturbance plants assigned by the Ministry of Environment, 3taxa were recorded: Paspalum distichum, Ambrosia artemisiifolia var. elatior, Solanum carilinense.

  • PDF

Vascular Plants of Hwapocheon Wetland Protected area in Gimhae (김해 화포천 습지보호지역의 관속식물상)

  • Yun-do, Hwang;Sang-jun, Han
    • Journal of Wetlands Research
    • /
    • v.26 no.1
    • /
    • pp.92-113
    • /
    • 2024
  • The Purpose of this study were to present the basic data for conservation and management of wetland ecosystem by surveying the characteristics of vascular plants distributed in Hwapocheon wetland protected area. The results are as follows. The numbers of vascular plants were summrized as 339 taxa including 81 familices, 221 genera, 315 species, 9 subspecies and 12 varieties and 2 forms. The rare plants were 7 taxa including Aristolochia contorta, Hydrocharis dubia and so on. The floristic target species were 32 taxa including 17 taxa of grade I, 7 taxa of grade II, 4 taxa of grade III, 2 taxa of grade IV and 2 taxa of grade V. The invasive alien plants were 66 Rumex crispus, Oenothera biennis, Veronica arvensis and so on. The ecosystem disturbing species were 11 taxa including Humulus scandens, Ambrosia artemisiifolia, Ambrosia trifida, Lactuca seriola, Symphyotrichum pilosum and so on. The hydrophytes were 29 taxa including 16 taxa of emergent plants, 3 taxa of submerged plants, 4 taxon of free-floating plant 6 taxa of floation-leaved plants.

Flora, Actual Vegetation Map, and Primary Production of the Vascular Hydrophytes and Hygrophytes in the Upo Wetland (우포늪에서 수생 및 습생 관속식물의 식물상, 현존식생도 및 1차 생산)

  • Kang, Min-jeong;Kim, Cheol-Soo;Oh, Kyung-hwan
    • Journal of Wetlands Research
    • /
    • v.9 no.2
    • /
    • pp.45-55
    • /
    • 2007
  • Flora, actual vegetation map, distribution area by the life form, primary productivity and annual primary production by the vascular hydrophytes and hygrophytes were investigated in the Upo wetland, Changnyeong-gun, Gyeongsangnam-do, Korea from May 2005 to March 2006. The flora of Upo, Mokpo, Sajipo, Jokjibyeol, Topyeongcheon upstream, and Topyeongcheon downstream were composed of 263, 233, 244, 182, 190, and 178 taxa, respectively. The flora of total study area was 85 families, 224 genera, 287 species, 42 varieties, 4 form, or total 333 taxa. Among them, hydrophytes, hygrophytes, and others were 38, 108, and 187 taxa, respectively. The life form of the vascular hydrophytes was classified as 20 taxa of emergent plants, 6 taxa of floating-leaved plants, 5 taxa of free-floating plants, and 7 taxa of submersed plants, respectively. There were 27 plant communities including pure population, mixed population, and etc. It is also found that Trapa japonica-Ceratophyllum demersum community occupies 60.64 ha, the largest area, and Salvinia natans-Ceratophyllum demersum community 32.91 ha, Zizania latifolia community 30.05 ha, and that the area of free-floating plants was the largest as 172.6 ha(47.9%) on the basis of life form. Total annual primary production of the vascular hydrophytes and hygrophytes was 1,383.3ton. That of the emergent hydrophytes was the most as 564.1 ton(40.8%), and those of the free-floating, floating-leaved, and the submersed were 484.1 ton(34.9%), 146.7 ton(10.6%), and 1.3 ton(0.5%), respectively, and the hygrophytes was 182.1 ton(13.2%). Since most plant species are fairly adapted to the present marsh environment, bad influences and change of species composition are expected by the artificial influences on the wetland such as fragmentation, reclamation, and introduction of the exotic species. Therefore, schemes and counterplans for the conservation and preservation of the marsh are demanded.

  • PDF

A Basic Study on the Euryale ferox Salisbury for Introduction in Garden Pond - Focusing on the Flora and Vegetation - (정원내 가시연꽃(Euryale ferox Salisbury) 도입을 위한 기초연구 - 식물상과 식생을 중심으로 -)

  • Lee, Suk-Woo;Rho, Jae-Hyun;Oh, Hyun-Kyung
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.34 no.1
    • /
    • pp.83-96
    • /
    • 2016
  • Through the research and analysis on the vegetation environment, flora of habitats through documentary and field studies over 14 habitats of Euryale ferox Salisbury within Jeollabukdo, with the objective of acquiring the basic data for forming an environment based on plantation of reservoirs that are composed with Euryale ferox, the following results were obtained. 1. The entire flora of the 14 habitats appeared to be 79 families, 211 genus, 298 species, two subspecies, 30 varieties and six forma, thus, a total of 336 taxa was confirmed. Among these, emergent water plants appeared to compose 17 taxa, floating-leaved plants to compose seven taxa including Euryale ferox floating plants to compose five taxa and submerged water plants to compose two taxa. As a result of analyzing the similarity only over the water plants. The lowest similarity rate appeared between Gamdong Reservoir and Aedang Reservoir, as the similarity rate between the two regions appeared to be 0% as a result of the analysis. Floating-leaved plants, lotuses and caltrops, appeared to be equally inhabiting in Hanseongji at Jeongeup and Seoknam Reservoir at Gochang, which showed the highest similarity rate, in addition to Euryale ferox. 2. When examining the appearance frequency of aquatic plants per growth type, Actinostemma lobatum and Phragmites communis, in addition to Euryale ferox each appeared 11 times, showing a high frequency of 78.6% and Trapa japonica, which is a floating-leaved water plant, appeared ten times(71.4%) and Zizania latifolia appeared eight times(57.1%). In addition, the appearance rate appeared to be high in the order of Persicaria thunbergii, Leersia sayanuka, Ceratophyllum demersum, Echinochloa crusgalli var. oryzicola, Scirpus maritimus, and Nelumbo nucifera. 3. The rare plants discovered in the Euryale ferox habitats pursuant to the IUCN evaluation standards was confirmed to be composed of five taxa, with three taxa including the least concerned species(LC), Melothria japonica at Yanggok Reservoir, Hydrocharis dubia at Myeongdeokji and Ottelia alismoides at Daewi Reservoir, in addition to vulnerable species(VU), Utricularia vulgaris at Sangpyeong Reservoir, along with Euryale ferox. 4. Most of the group or community types of the natural habitats of Euryale ferox appeared to be the Euryale ferix community' and the Daewi Reservoir of Gunsan was defined as caltrop + Euryale ferox + Nymphoides indica community. The green coverage ratio of Euryale ferox per natural habitats showed a considerably huge deviation from 0.03 to 36.50 and as the average green coverage ratio was appropriated as 9.8, it can be considered that maintaining the green coverage ratio of Euryale ferox in a 10% level would be advisable when forming a reservoir with Euryale ferox as the key composition species. 5. The vegetation community nearby the natural habitats of Euryale ferox per research subject area appeared to be composed of three Leersia japonica communities, two communities each for Zizania latifolia community and Trapa japonica community and one community each for Nelumbo nucifera community, Nymphoides peltata + Typha orientalis community, Trapa japonica + Nelumbo nucifera community, Hydrocharis dubia community, Leersia japnica + Paspalum distichum var. indutum community and Euryale ferox + Trapa japonica community, showing a slight difference depending on the location conditions of each reservoir. Thus, this result may be suggested as a guideline to apply when allocating the vegetation ratio and the types of floating-leaved plants upon planting plants in reservoirs with Euryale ferox as the main companion species.

Community Structure, Productivity, and Nutrient Uptake of the Vascular Plants in the Wetlands of the Asan-Lake (아산호 습지에서 관속식물의 군집 구조와 생산성 및 영양염류의 흡수)

  • Kim, Cheol-Soo;Son, Sung-Gon;Lee, Jeong-Hwan;Oh, Kyung-Hwan
    • The Korean Journal of Ecology
    • /
    • v.23 no.3
    • /
    • pp.201-209
    • /
    • 2000
  • The flora, distribution area, vegetation structure, annual net primary production, and nutrient uptake of the vascular hydrophytes, hygrophytes and mesophytes were investigated in the wetlands of the Asan-Lake, Chungchongnam-do and Kyonggi-do, Korea from March to October in 1997 to reveal the correlation between the plant community and the lake environment. The flora was composed of 38 families, 89 genera, 106 species, 14 varieties or total 120 kinds of the vascular plants. The life from of the hydrophytes were classified as 14 kinds of emergent plants, 5 kinds of submerged plants, and 4 kinds of free-floating plants, respectively. The number of species was various to 4 ∼85 kinds in each site. The dominant species was Zizania latifolia, and the importance values of Zizania latifolia, Typha orientalis, Phragmites communis, and Spirodela polyrhiza were 39.58, 14.90, 13.97, and 7.64, respectively. The distribution area of the emergent hydrophytes, hygrophytes, and mesophytes was 49.3 ㏊ (90.5%), and free-floating plants was 5.2 ㏊ (9.5%), whereas the floating-leaved and submersed plants were rare. Annual net production of the emergent hydrophytes, hygrophytes, and mesophytes was 547.9 ton D.W./yr (98%), and those of the free-floating plants was 10.5 ton D.W./yr (2%), and 558.4 ton D.W./yr in the whole lake ecosystem. The total uptake of nitrogen and phosphorus by the vascular plants was 7,099 and 1,891 ㎏/yr in the whole lake ecosystem.

  • PDF

Habitats Selection of Zooplankton between Pelagic and Littoral Zone in Shallow Reservoirs in Summer (여름철 얕은 저수지의 중앙과 연안에서 동물플랑크톤 군집의 서식지 선택)

  • Jeong, Hyun-Gi;Seo, Jung-Kwan;Lee, Hae-Jin;Lee, Won-Choel;Lee, Jae-Kwan
    • Korean Journal of Environmental Biology
    • /
    • v.28 no.4
    • /
    • pp.188-195
    • /
    • 2010
  • The Abundance of zooplankton was studied in the pelagic and the littoral zone in four shallow reservoirs along with the Nakdong river basin of S. Korea. In the pelagic zone, there was a higher zooplankton density ($477.5{\pm}312.4$ ind. $L^{-1}$) than in the littoral zone during our study period (t=2.337, p<0.05). Overall, Rotifers were the most abundant group in the studied reservoirs. However, there are no significant correlations between the pelagic and the littoral zone in physical and chemical parameters. In the pelagic and the littoral zone, zooplankton density usually increased with increasing density of aquatic plants in the littoral zone. However, this study showed different trends. Although macrophyte abundance was higher in the littoral zone than in the pelagic zone, zooplankton abundance was higher in pelagic zone. Moreover, when macrophytes (Trapa japonica and Spirodela plyrhiza) covered the complete water surface of the reservoir, zooplankton abundance was higher. It appears that comparisons between the pelagic and the littoral zone give important cues on the selection of habitats by zooplankton. It is assumed that a higher density of aquatic plants does not always imply a higher density of zooplankton in the littoral zone. Furthermore, when the water surface was covered with aquatic plants, the zooplankton communities showed the highest density in the pelagic zone. These results imply that habitat selection of the zooplankton community (Rotifers) is influenced by aquatic plant density with an associated decrease in predation pressure during summer.

Flora in Ahnshim Wetland, Daegu Metropolitan City (대구광역시 안심습지의 식물상)

  • You, Ju-Han;Jung, Sung-Gwan;Park, Kyung-Hun;Kim, Kyung-Tae;Lee, Woo-Sung
    • Korean Journal of Plant Resources
    • /
    • v.21 no.2
    • /
    • pp.162-170
    • /
    • 2008
  • The purpose of this study was to suggest the raw data on establishing the domestic wetland conservation plan. The results of this study were as follows. The vascular plants were summarized as 201 taxa in Ahnshim wetland; 57 families, 154 genera, 179 species and 22 varieties. The rare and endangered plant designated by Korea Forest Service was Hydorcharis dubia. In the wetland plants, the emerged plants were showed Typha angustata, Beckmannia syzigachne, Zizania latifolia, Phragmites communis, Persicaria thunbergii, Oenanthe javanica and Veronica undulata, and the submerged plants were Potamogeton crispus, Vallisneria asiatica, Hydrilla verticillata, Ceratophyllum demersum and Myriophyllum verticillatum. And the floating leaved plants were confirmed Potamogeton distinctus, Hydrocharis dubia, Nelumbo nucifera and Nymphoides peltata, and the floating plants were Salvinia natans, Spirodela polyrhiza and Lemna paucicostata. The naturalized plants were 33 taxa; Avena fatua, Dactylis glomerata, Rumex crispus, Rumex conglomeratus, Amaranthus retroflexus, Lepidium apetalum, Tlaspi arvense, Descurainia pinnata, Potentilla supina, Vicia villosa, Robinia pseruo-acacia, Amorpha fruticosa, Trifolium repens, Medicago sativa, Ailanthus altissima, Euphorbia supina, Oenothera lamarckiana, Quamoclit angulata, Ipomoea purpurea, Solanum nigrum, Veronica perisca, Helianthus tuberosus, Ambrosia artemisifolia var. elatior, Xanthium strumarium, Erigeron annuus, Erigeron canadensis, Conyza sumatrensis, Senecio vulgaris, Bidens frondosa, Tagetes minuta, Taraxacum officinale, Taraxacum laevigatum and Sonchus oleraceus.

The Flora and Vegetation of the Dongjin River (동진강의 식물상과 식생)

  • Lee, Kyeong-Bo;Kim, Chang-Hwan;Lee, Deog-Bae;Kim, Jong-Gu;Park, Chan-Won
    • Korean Journal of Environmental Agriculture
    • /
    • v.23 no.1
    • /
    • pp.34-40
    • /
    • 2004
  • This study was conducted to get some vegetation information and to find out a way to conseue the ecosystem in the Dongjin River. The riparian vegetation was investigated by Zurich-Montpellier school's method from June 2001 to March 2002. The number of riparian plants were 73 families, 188 genera, 238 species, 33 varieties or 272 Taxa in Dongjin River. The characteristics of life farm spectra were 97 therophytes (35.7%), 78 hydrophytes (28.7%), 41 hemicryptophytes (15.1%) 22 geophytes (8.1%), and 12 chamaephytes (4.4%). The riparian vegetation was identified 8 plant communities (Potamogeton brechtoldii, Hydrilla verticillata, Ceratophyllum demersum, Potamogeton malaianus, Phragmites japonica, Persicaria thunbergii, Cardamine scutata, Persicaria hydropiper) in upstream, 4 plant communities (Zizania latifoliar, Phragmites communis, Persicaria thunbergii, Humulus japonicus) in midstream and 8 plant communities (Hydrocharis dubia, Ceratophyllum demersum, Trapa japonica, Zizania latifolia, Paspalum distichum, Phragmites communis, Pericaria thunbergii, Amphicarpaea edgeworthii) in downstream of the Dongjin River.

Changes of Vegetation Structure according to the Hydro-seral Stages in the East Coastal Lagoons, Korea (동해안 석호에서 수생천이계열에 따른 식생구조의 변화)

  • Kim, Hyoe-Young;Kim, Mi-Hee;Choi, Hee-Kyung;Lyang, Doo-Yong;Shin, Eun-Joo;Lee, Kyu-Song;Yi, Hoon-Bok
    • Journal of Wetlands Research
    • /
    • v.12 no.3
    • /
    • pp.129-144
    • /
    • 2010
  • We have studied the changes of the environmental and vegetational factors according to the hydro-seral stages in the shoreline of the lagoons, Korea. We have divided seral stages into 7 stages from open water stage to the stratified forest stage considering as the characteristics of water body, dominance of submerged and emergent plant, and development of the shrub, subtree and tree layer. According to the successional stage, water depth gradually decreased and water quality changed from seawater to brackish water and from brackish water to fresh water, organic matter in a soil layer gradually increased, and the litter layer grew up. As the development of the vegetation structure, the life-form of the vascular plants changed as follows; open water ${\rightarrow}$ submerged plant and floating-leaved plant ${\rightarrow}$ emergent plant and submerged plant ${\rightarrow}$ emergent plant ${\rightarrow}$ emergent plant, mesophyte and scrub ${\rightarrow}$ mesophyte. In the late seral stage, the 3 different forest types were established by the water retention or drainage and nutrient accumulation of the soil layer. Salix dominant forest developed in the wetted sites, the forest type dominated by Pinus thunbergii, Carex pumila and mesophytes developed in the well drained sites causing by sand substrate, and the forest type dominated by the planted or ruderals such as Pinus densiflora, Robinia psedo-acacia, Festuca ovina, Setaria viridis ect. developed in the sites composed of forest soil introduced by artificial reclamation.

Assessment of Water Purification Plant Vegetation for Enhancement of Natural Purification in Mankyeong River (만경강 본류의 자연정화능 향상을 위한 식생학적 진단)

  • Lee, Kyeong-Bo;Kim, Chang-Hwan;Kim, Jong-Gu;Lee, Deog-Bae;Park, Chan-Won;Na, Seoung-Yong
    • Korean Journal of Environmental Agriculture
    • /
    • v.22 no.2
    • /
    • pp.153-165
    • /
    • 2003
  • This study was conducted to get some information on plants abilities to enhance water purification and to find out away to conserve the ecosystem in Mankyeong river. Vegetation were surveyed at 4 sites pointing by 1:5,000 topographical map, from June 2001 through March 2002. T-N content in water were high in all sites of Mankyeong river, the average T-N levels were 8.59 and 17.23 mg/L, summer and winter, respectively. The average T-P level during summer was 0.47 mg/L but that was 1.79 mg/L during winter. The BOD level in Mankyeong upstream ranged from 0.95 to 2.57 mg/L which would be in I or II grade according to water quality criteria by Ministry of Environment but BOD level in Mankyeong downstream ranged from 6.87 to 9.72 mg/L. The plant species of river flora were found 251, 98 and 85, upstream midstream and down stream, respectively. Among the surveyed plants, Ceratophyllum demersum, submerged plant and Nuphar subinteperrimum took up higher contents of phosphate and nitrogen than other piano. The Phragmites communis and Zizania latifolia having much biomass were thought to be suitable plants for enhancement of e natural water purification.