• Title/Summary/Keyword: 부순 모래

Search Result 102, Processing Time 0.025 seconds

The Study on Fluidity and Strength Properties of High Strength Concrete Utilizing Crushed Sand (부순모래를 사용한 고강도콘크리트의 유동성 및 강도특성에 관한 연구)

  • Shin, Hong-Chol;Park, Sang-Joon;Ahn, Nam-Shik;Lee, Eui-Hak;Kang, Hoon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.383-386
    • /
    • 2005
  • This paper is to investigate the effect of W/B, blend ratio of crushed sand with sea sand on fluidity and strength properties of high strength concrete utilizing crushed sand. W/B set up 0.25, 0.30, 0.35 and the blend ratio of crushed sand with sea sand set up 0:100, 30:70, 50:50, 70:30, 100:0 The results of this study are summarized as the follows; 1) The increase of the blend rate of crushed sand, affected on the enhancement of flow, the increase of dosage of SP and water content, but the decrease S/a 2) Compressive strength is increased when crushed sand $30\~70\%$ was replaced with sea sand. 3) The optimal replacement percentage of crushed sand is $50\%$ with sea sand.

  • PDF

The Influence of the Properties of Crushed Stone Sand on the Mixing Factor and Compressive Strength of Concrete (부순모래의 품질특성이 콘크리트의 배합인자 및 압축강도에 미치는 영향)

  • Hong Ji Hoon;Yum Jun Haun;Choi Jin Man;Jeong Yang;Lee Seong Yeun;Yeo Byung Chul
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.623-626
    • /
    • 2005
  • This study is aimed for investigating the influence of the properties of crushed stone sand on the mixing factor and compressive strength of concrete. The results of this study are as follows; The influence of Particle Shape and Very Fine Sand(VFS) of crushed stone sand on the mixing factor was higher than Fineness Modulus. The demand water of concrete with crushed stone sand was decreased about $12\~18kg/m^3$with increasing $4\%$ of Particle Shape and increased $8\~15kg/m^3$ with increasing $3\%$ of ratio of Very Fine Sand(VFS).

  • PDF

Evaluation of Physical and Chemical Properties of Crushed Sand for Highway Construction (고속도로 건설현장에서 사용되는 부순모래의 물리적, 화학적 특성 평가)

  • Lee, Chan-Young;Shim, Jae-Won;Kim, Jin-Cheol;Lee, Byung-Duk
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.141-144
    • /
    • 2006
  • In this study, evaluation of physical and chemical properties of crushed sand was performed to establish optimal mix proportion standard for concrete using crushed sand afterward. Most of properties of crushed sand were satisfied with KS F 2527. Especially, chemical stabilities such as alkali-aggregate reaction were fairly good. However, considerable attention would be required in using crushed sand from lime stone judging from the result that weight loss of it was more than 23.8%. There were some differences in the properties with production region, stone type and capacity of facility, therefore it is thought that quality should be controled by optimal regulations for corresponding items.

  • PDF

The Compressive Strength Prediction of Crushed Sand Concrete by Non-Destructive Test Method (부순모래 콘크리트의 비파괴 시험에 의한 압축강도 추정)

  • Kim, Myung-Sik;Jang, Hei-Suk;Beak, Dong-Il;Sin, Nam-Gyun;Kim, Kang-Min
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.145-148
    • /
    • 2006
  • Schmidt hammer and ultra-sonic method are commonly used for crushed sand concrete compressive strength test in a construction field. At present, various of equations for prediction of strength are present, which have been used in a construction field. The purpose of this study is to evaluate the correlation between prediction strength by presentation equations and destructive strength to test specimen, and find out which is a suitable equation for the construction site, In this study, a strength test was carried out destructive test by means of core sampling and traditional test. Non-destructive test was conducted Schmidt hammer and ultra-sonic method, the experimental parameter were concrete age, curing condition, test method and strength level. It is demonstrated that the correlation behavior of crushed sand concrete strength in this study good due to the perform analysis of correlation between core, destructive strength and non-destructive strength.

  • PDF

Resistance Estimates of Cement Mortars Using Crushed Sand Under Chemical Attacks (화학적 침해를 받는 부순모래를 사용한 시멘트 모르타르의 저항성 평가에 관한 연구)

  • Kim, Myung-Sik;Jang, Hui-Suk;Beak, Dong-Il;Bang, Kwang-Won;Kim, Kang-Min
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.577-580
    • /
    • 2006
  • As this study is to estimate resistance of cement mortars using crushed sand under chemical attacks. Besides tests have been carried out with cement mortars by river sand and crushed sand by fine sand, cement mortars mix various proportions of silica fume and fly ash(up to 15% and 50% by weight for cement) were prepared and immersed in pure water, sodium sulfate solution, magnesium sulfate solution, seawater for 28days, 60days, 90days and 180days. Test on the change in the weight and compressive strength of cement mortars according to the duration of immersion time and the content of silica fume and fly ash was performed.

  • PDF

Mock-up Test of Crushed Sand Concrete Using Quality Improvement Technology (고품질화 기술을 사용한 부순모래 콘크리트의 모의구조체 실험)

  • Yoo, Seung-Yeup;Kim, Gyu-Dong;Lee, Seung-Hoon;Yun, Gi-Won;Han, Cheon-Goo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.629-632
    • /
    • 2006
  • This study investigated the engineering properties of crushed sand, based on improvement quality technology, and washed sand concrete by conducting mock-up test, in order to verify the availability of crushed sand for full sized structure. Test results showed that fluidity, air content, supersonic waves and corrosion state of concrete using crushed sand had favorable results. In addition, it is found that compressive strength, drying shrinkage length change, hydration heat and neutralization of crushed sand concrete exhibited similar tendency, with that of washed sand concrete. The crushed concrete using developed quality improvement technology shows comparable performance to washed sand concrete.

  • PDF

A Study on the Properties of High Flowing Concrete with Quality Variation of Crushed Sand (부순모래의 품질변화에 따른 고유공콘크리트의 특성에 관한 연구)

  • Choi, Il-Ho;Jung, Yang-Hee;Yum, Jun-Hwan;Choi, Jin-Man;Lee, Seong-Yeon;Hong, Kuung-Seon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.81-84
    • /
    • 2006
  • Currently, natural aggregates of good quality are hard to use because of continuous decrease of internal aggregate resource and regulation of gathering. So, use of crushed sand was being increased. On the other hand, skyscraper projects with 100 stories are being planned within the country and high strength concrete must be used to construct a skyscraper with 100 stories. High strength concrete is necessary to use crushed sand too because we are still unable to secure natural aggregates of good quality. So, This study indicated basic data necessary for mix design of high strength concrete through valuation of concrete property by quality variation of crushed sand.

  • PDF

A Study on the Material Properties of Concrete Using Crushed Sand (부순모래를 사용한 콘크리트의 물성에 관한 연구)

  • 윤용호;정용욱;이승한
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.106-111
    • /
    • 2003
  • This paper is to investigate the characteristics of a concrete in which river sand is partially substituted with crushed sand. Since river sand has a relatively small fineness modulus, there is a need to increase the fineness modulus of sand used in the manufacture of concrete. In an experiment, it was observed that when river sand had a fineness modulus of 2.0~2.4 and crushed sand had a fineness modulus of 2.8~3.5, the substitution rate of the crushed sand was preferably within the range of 25~50%. The experimental results also revealed that as the substitution rate of the crushed sand increased, the flowability of the concrete tended to increase. However, when the substitution rate of the crushed sand reached 75% or more, the workability of the concrete was considerably poor. Further, as the substitution rate of the crushed sand increased, the air content and the bleeding rate of the concrete were low.

  • PDF

Chemical Attack Resistance Characteristics of Cement Mortars U sing in Crushed Sand (부순모래를 사용한 시멘트 모르타르의 화학적 침해 저항 특성)

  • Kim Kang Min;Baek Dong Il;Kim Myung Sik;Jang Hui Suk
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.519-522
    • /
    • 2005
  • As this study is to test effects of chemical attack on deterioration of cement mortars using in crushed sand. Besides tests have been carried out with cement mortars by river sand and crushed sand by fine sand, cement mortars mix various proportions of slica fume and fly ash(up to $15\%$ and $50\%$ by weight for cement) were prepared and immersed in pure water, sodium sulfate solution, magnesium sulfate solution, seawater for 28days. Test on the change in the weight and compressive strength of cement mortars according to the duration of immersion time and the content of slica fume and fly ash was performed.

  • PDF

The Practical Application on the Super Flowing Concrete using Manufactured Sand (부순모래를 사용한 초유동 콘크리트의 현장적용)

  • Park, Chil-Lim;Kwon, Yeong-Ho;Lee, Sang-Soo;Won, Cheol
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.04a
    • /
    • pp.9-14
    • /
    • 1998
  • In this paper, we described the basic elements(flowabiligy, fillingability, elapsed time, pumpability, no-vibrating effects, and etc.) required for the application and quality control of the super flowing concrete(SFC) in Top Down site. Also, manufactured sand and fly ash were used for investigating characteristics of SFC through various experiments(mix design, optimum mix condition) before placing the concrete in site. As a result of this project, the developed SFC shown high flowability and self-fillingability in the joint good enough for the requirement. Futhermore, inner uniformity of the no-vibrated concrete was verified by testing reformed space. Therefore, quality control and compressive strength(360kg/$\textrm{cm}^2$) can be secured by using SFC even without vibrating.

  • PDF