Park, Keon-Jun;Kim, Hyun-Ki;Oh, Sung-Kwun;Choi, Won;Kim, Jeong-Tae
Proceedings of the KIEE Conference
/
2008.07a
/
pp.1891-1892
/
2008
본 논문에서는 부분방전 패턴인식을 위한 퍼지뉴럴네크워크(Fuzzy-Nueral Network를 설계한다. 퍼지뉴럴네트워크의 구조에서 규칙의 전반부는 개별적인 입력 공간을 분할하여 표현하고, 규칙의 후반부는 다항식으로서 표현되며 오류역전파 알고리즘을 이용하여 연결가중치인 후반부 다항식의 계수를 학습한다. 또한, 유전자 알고리즘을 이용하여 각 입력에 대한 전반부 멤버쉽함수의 정점과 학습률 및 모멤텀 계수를 최적으로 동조한다. 제안된 네트워크는 부분방전 패턴인식을 위해 다중 출력을 가지며, 초고압 XLPE 케이블 절연접속함의 모의결함에 대해 부분방전 신호를 패턴인식한다. 부분방전 신호는 PRPDA 방법을 통해 256개의 입력 벡터와 4개의 출력 벡터를 가지며, 보이드 방전, 코로나 방전, 표면 방전, 노이즈의 4개 클래스를 분류하며, 패턴인식률로서 결과를 분석한다.
전력기기에서 발생하는 부분방전을 정확히 측정하고 이를 올바르게 해석하는 작업은 신뢰성 있는 진단법을 개발하고 이를 현장에 적용하는데 있어 대단히 중요하다. 측정된 고주파 데이터를 패턴 분석이 가능한 형태로 가공하는 전처리 과정을 수행하고, 가공된 데이터를 패턴인식을 통하여 기존의 각 노이즈 및 부분방전 패턴과 비교하여 실제 측정된 데이터가 어떤 부분방전 패턴인지 판단한다. 패턴 인식 처리 방법으로는 컴퓨터 분야 신경회로망의 BP 알고리즘과 SOM 알고리즘이 널리 사용되고 있으며 본 연구에서는 TF-MAP, PRPDA, EBP 알고리즘을 이용하여 부분방전 패턴인식 기술 개발에 관한 연구를 수행하였다.
전력설비에 대한 부분방전 패턴인식은 결함의 차이에 따라 다양한 패턴의 차이를 보이고 있으며, 신경회로망을 비롯한 다양한 패턴인식 기법들이 적용되고 있다. 본 논문에서는 이의 일환으로 퍼지 집합 기반 퍼지뉴럴네트워크를 설계하여 초고압 XLPE 케이블 절연접속함의 모의 결합에 대해 부분방전 신호를 패턴인식하고자 한다. 부분방전 신호는 보이드 방전, 코로나 방전, 노이즈의 3개 클래스로 분류하게 되며, PRPDA 방법을 통해 556개의 입력 벡터와 3개의 출력 벡터를 가지며 총 120개의 패턴수를 가진다.
$SF_6$ 가스로 절연된 GIS(Gas Insulation Switchgears)는 매우 신뢰성이 높은 것으로 평가되어왔다. 그러나 GIS 내부에서 발생하는 결함에 대하여 완전하게 배제시키지 못하고 있으며, 이러한 부분방전 활동에 의한 대부분의 결함들이 GIS의 사고를 이끈다고 알려져 있다[1]. 따라서, GIS 내부에서 발생하는 부분방전 현상의 위치와 측정은 1940년대 초반부터 관심을 가져왔으며, 현재에는 부분방전 형태의 패턴이 사용된 부분방전 검출회로 및 신호의 전파와는 무관하다는 것을 알아낸 시점에 이르렀다. 이에 따라, 본 논문에서는 $SF_6$ 가스가 봉입된 GIS 내부에서 발생하는 부분방전 형태의 패턴인식을 위한 방법으로 NN(Neural Network)의 알고리즘 중 BP(Back-Propagation) 알고리즘을 이용하였다.
Proceedings of the Korean Institute of Intelligent Systems Conference
/
2008.04a
/
pp.411-414
/
2008
본 논문에서는 다중 출력을 가지는 퍼지 집합 기반 퍼지뉴럴네크워크(Fuzzy-Nueral Network; FNN)를 설계한다. 퍼지 집한 기반 퍼지뉴럴네트워크는 각 입력 변수에 따른 개별적인 입력 공간을 공간 분할함으로서 네트워크를 구성한다. 규칙의 전반부는 앞서 언급한 개별적인 입력 공간을 분할하여 표현하고, 규칙의 후반부는 다항식으로서 표현되며 오류역전파 알고리즘을 이용하여 연결가중치인 후반부 다항식의 계수를 학습한다. 또한, 각 입력에 대한 전반부 멤버쉽 함수의 정점과 학습률 및 모멤텀 계수를 유전자 알고리즘을 이용하여 최적 동조한다. 따라서 유전자 알고리즘을 이용하여 퍼지뉴럴네트워크를 최적 설계한다. 제안된 네트워크는 초고압 XLPE 케이블 절연접속함의 모의결함에 대해 부분방전 신호를 패턴인식한다. 부분방전 신호는 PRPDA 방법을 통해 200개의 입력 벡터와 4개의 출력 벡터를 가지며, 보이드 방전, 코로나 방전, 표면 방전, 노이즈의 4개 클래스를 분류한다.
Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
/
v.14
no.5
/
pp.12-18
/
2000
This paper describes the analysis of ultrasonic signal and partial discharge(PD) signal patterns for each location of particle in GIS. The characteristics of the ultrasonic signal and PD signal patterns for each location were as follows; in case of particle on the electrode, large ultrasonic signals and large PD signals occurred in positive half-cycle periodically; in case of particle on the spacer, ultrasonic signals and large PD signals occurred in negative half-cycle periodically; in case of the free moving particle, ultrasonic signals and large PD signals occurred by collision non-periodically. As a result, it was confirmed that particle in GIS could be located by the comparison and analysis of ultrasonic signal and PD signal patterns.
Kim, Seong-Il;Jung, Seung-Yong;Koo, Ja-Yoon;Jang, Yong-Mu
Proceedings of the KIEE Conference
/
2006.10a
/
pp.145-146
/
2006
본 논문은 부분방전(PD: Partial Discharge)의 패턴인식 확률 극대화를 목적으로 신경망(NN: Neural Network) 파라미터 중에서 은닉층 뉴런의 수, 모멘텀(momentum)의 Step size와 Decay rate 를 최적화하기 위하여 유전 알고리즘(GA: Genetic Algonthm)을 적응하였다. 실험적 연구의 대상으로서, GIS(Gas Insulated Switchgear)사고의 주요 원인으로 보고되어있는 결함들을 인위적으로 모의한 16개 Test cell을 이용하여 부분방전을 발생시켰다. 부분방전 신호는 본 연구팀이 개발한 센서를 이용하여 검출되어 데이터베이스가 구축되어 그로부터 추출된 학습 데이터들의 학습에 다음과 같은 5가지 신경망 모델이 적응되었다: Multilayer Perception (MLP), Jordan-Elman Network (JEN), Recurrent Network (RN), Self-Organizing Feature Map (SOFM), Time-Lag Recurrent Network (TLRN). 유전 알고리즘 적용 효율성을 분석하기 위하여 동일한 데이터를 이용하여 다음과 같은 두 가지 방법을 적용한 결과를 상호 비교하였다. 우선 상기 선택된 모델만 적용하였고 다근 하나는 상기 모델과 Genetic Algorithm이 동시에 적용되었다. 모든 모델에 대하여 학습오차와 패턴 분류 확률을 비교한 결과, 유전 알고리즘 적응 시 부분방전 패턴인식 확률이 향상되었음이 확인되어 향후 신뢰성 있는 GIS 부분방전 진단기술에 활용될 수 있을 것으로 사료된다.
가스절연개폐장치(GIS: Gas Insulated Switchgear) 내부에서 발생하는 UHF 부분방전 신호를 측정하고, 이를 주파수 분석을 통하여 1차 부분방전 진단을 수행하며, 주요 이상이 있을 경우 위상 분석을 통하여 7가지의 부분방전 패턴으로 분류하여 부분방전 원인을 진단할 수 있는 GIS 부분방전 진단 시스템을 국산화 개발하였다. 이에 본 논문에서는 주파수 분석방법, 부분방전 진단 패턴 및 모니터링 시스템에 대하여 기술한다.
초고압 케이블에서 발생하는 부분방전을 측정하기 위해 다양한 방법들이 연구 개발되어왔다. 최근에는 초고압 케이블의 설치 후 시행하는 준공시험에 있어 부분방전 측정을 필수적으로 할 만큼 부분방전 진단기술의 중요성이 부각되고 있는 실정이며, 디지털 측정기술을 통한 부분방전자동측정 기술이 많이 제안되고 있다. 특히, 비전문가들만으로도 진단 및 감시가 가능하도록 하는 자동 패턴 분류에 대한 다양한 연구에 활발히 보고되고 있다. 본 논문에서는 초고압 케이블에서 발생되는 결함을 내부, 외부, 노이즈의 세 가지로 분류하고 PRPD(Phase Resolved Partial Discharge) 형태로 모의된 실험데이터와 현장에서 축적된 데이터를 선별하여 다양한 통계치를 추출하였고, 결함별 구분이 용이하지 않은 통계치를 제외한 값들을 Neural Network 방법으로 학습시켰다. 학습된 가중치 값을 LabView로 작성된 프로그램에 사용하여 변전소 내 EBG에서 검출한 부분방전 측정 결과에 적용하였다.
Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
/
2006.05a
/
pp.35-40
/
2006
최근 전기에너지의 사용비율은 해가 거듭될수록 증가되고 있으며, 경량화 소형화로 인한 전력기기의 스트레스가 증가되었다. 또한 고압송전으로 인해 전기적 사고는 대형사고를 유발하므로 전력기기의 수명예측은 매우 중요한 과제이다. 이에 본 논문에서는 XLPE 절연체의 보이드 유무에 따른 부분방전 패턴을 K-means 분포통계함수를 이용하여 부분방전 패턴의 그룹화를 시도하였다. 또한 전하량과 방전빈도수의 분포를 비교하기 위해 위상-전하랑 및 위상-전하량-빈도수에 의한 그룹의 centroid 이동 변화에 대하여 조사하였다. 그 결과 보이드가 존재하는 경우 전하량의 높은 점에서 중심점을 형성하였고, 방전발생위상의 차이는 크지 않았다. 또한 위상-전하량의 클러스터보다 위상-전하량-빈도수의 클러스터에서 객체간 편차가 더 커짐을 발견하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.