• Title/Summary/Keyword: 복합플랜트

Search Result 177, Processing Time 0.021 seconds

Economic Analysis on Repowering Plans for a Outworn Anthracite Power Plant (노후 무연탄발전소의 리파워링 방안에 대한 경제성 분석)

  • Kim, Su-Man;Lee, Jae-Heon
    • Plant Journal
    • /
    • v.9 no.1
    • /
    • pp.36-42
    • /
    • 2013
  • In this study, repowering scenarios are analyzed and evaluated from the economical point of view on a case by case basis. Based on the result of evaluation, the IRR indicates 2.34% on single 750 MW LNG combined cycle unit, 3.56% on 500 MW sub-bituminous PC units and 2.31% on 200 MW circulating fluidized bed combustion units, resulting in not reaching 7% rate of discount rate and being concluded uneconomical. However, proposes that it is most economical and feasible to repower power plant into 750 MW LNG combined cycle unit as long as the economic feasibility can be improved and it is necessary for old anthracite power plant to be repowered than rebuilt under the circumstances of lacking power supply.

  • PDF

Change of Ammonia Consumption with Gas Turbine Output in DeNOx System for a 580 MW Combined Cycle Power Plant (580 MW급 복합발전소 탈질설비에서 가스터빈 출력에 따른 암모니아 소모량 변화)

  • Jang, Yong-Woo;Yoo, Ho-Seon
    • Plant Journal
    • /
    • v.15 no.3
    • /
    • pp.23-28
    • /
    • 2019
  • In this study, ammonia consumption by gas turbine output was adjusted to find out the amount of ammonia consumption that complies with the enhanced Air Quality Preservation Act and internal regulation emission standards in SCR type DeNOx System for a 580 MW Sejong Combined Cycle Power Plant. For measurements, the gas turbine output was varied to 50, 99, 149, 198 MW and ammonia consumption was adjusted with the combustion gas and ammonia supply conditions fixed at each stage. When the emission limit were change from 10 ppm to 8 ppm, ammonia consumption was increased from 78, 93, 105, 133 kg/h to 89, 113, 132, 176 kg/h. The increase rate of ammonia consumption was 14, 22, 26, 32% per output category compared to the 10 ppm emission limit, which was shown to increase as output increased.

Economic Evaluation for Korea Type of 300 MW IGCC Demonstration Plant Technology Development Project (실물옵션을 활용한 한국형 300 MW급 IGCC 실증플랜트 기술개발사업의 경제성 분석)

  • Eom, Su-Jeong;Nam, Young-Sik
    • Journal of Climate Change Research
    • /
    • v.3 no.4
    • /
    • pp.271-280
    • /
    • 2012
  • The study aims to analyze economic viability of Integrated Gasification Combined Cycle, an innovative technology to utilize clean coal effectively and efficiently in the era of energy crisis. The study is conducted to evaluate business value of 300 MW IGCC demonstration plant technology development based on binomial option, in consideration of uncertainty of fuel price. Binomial option is one of the real option valuation methods, which is ideally suited to irreversible decision making under uncertainty. With this analysis, it shows that investment value is higher compared with economic evaluation based on discounted cash flow, since this method can measure quantity. As a result, this study is proved to be economically feasible, which have a positive impact on the next generation of IGCC and the connection with Carbon Capture and Storage.

Effect of the Reactive Power Compensation System on Performance Enhancement in a 900 MW Combined Cycle Power Plant (무효전력보상장치 설치가 900 MW 복합화력발전소의 성능향상에 미치는 효과)

  • Lee, Young Ok;Yoo, Hoseon
    • Plant Journal
    • /
    • v.17 no.2
    • /
    • pp.48-53
    • /
    • 2021
  • In the case of a 900 MW combined cycle power plant, most of the load on the site is a rotating device and is operated at a low power factor, and the power factor decrease increases the reactive power, which causes the efficiency of the device to be consumed and unnecessary unnecessary power consumption. This study intends to present the results by installing and operating a reactive power compensation device that absorbs and removes reactive power, which is a solution to this problem, on a 6.9 kV on-board bus. As a result of application of this system, first, it was confirmed that the power factor of the rotating machine was improved to 0.22 and the load power in the house was reduced by 1.4%, and the thermal efficiency of the generator was increased by 0.1% and the power generation power by 810 kW. Next, it was confirmed that the cost of construction and operation can be reduced in the future due to economic feasibility, with a decrease of 200 million won/year in electricity loss compared to 1.5 billion won in investment, an increase of 1 billion won/year in sales, and a one-year capital recovery period.

The performance of combined heat and power plant according to gas turbine air mass flow rate change (가스터빈 공기량 조절에 따른 열병합발전 성능 변화)

  • Kim, Jae-Hoon;Moon, Seung-Jae
    • Plant Journal
    • /
    • v.18 no.2
    • /
    • pp.32-40
    • /
    • 2022
  • In this study, we investigated the operation data of combined heat and power in accordance with the change of the inlet guide vane with partial load. The partial load 80% could close the inlet guide vane up to 24%, and the exhaust gas temperature could be increased by 52℃. The partial load 90% could close the inlet guide vane up to 12%, and the exhaust gas temperature could be increased by 23℃. At 80% of partial load with the thermal load tracking mode, the output could be increased up to 5.68 MW, the combined cycle efficiency increased by 0.73%, and the combined heat and power efficiency increased by 1.81%. At 90% of the partial load, the output could be increased up to 2.55 MW, the combined cycle efficiency increased by 0.32%, and the combined heat and power efficiency increased by 0.72%.

  • PDF

Characteristic Tests on the Gas Turbine Generator System for Determination and Verification of Model Parameters in a Combined Cycle Power Plant (복합화력발전소 가스터빈 발전기계통 모델정수 도출 및 검증을 위한 특성시험)

  • Kim, Jong Goo;Yoo, Hoseon
    • Plant Journal
    • /
    • v.17 no.4
    • /
    • pp.35-40
    • /
    • 2021
  • In this study, a technical characteristic test was conducted on the gas turbine generator system of Seoincheon Combined cycle no.6 to derive and verify the model constants. As a result of the generator maximum/minimum reactive power limit test, the maximum reactive power limit is 80 MVar and the minimum is -30 MVar. The generator uses the GENROU model, the field time constant (T'do) is 4.077 s, and the inertial constant (H) is 5.461 P.U. Excitation system used ESST4B model to derive and verify model constants by simulating no-load 2% AVR step test, PSS modeling derived from PSS2A model constants, and simulated and compared measurement data measured when PSS off/on Did. The GGOV1 model was used for the governor-turbine, and the numerical stability of the determined governor-turbine model constant was verified by simulating a 10% governor step test through the PSS/E simulation program

Seismic Fragility Analysis of Equipment Considering the Inelastic Energy Absorption Factor of Weld Anchorage for Seismic Characteristics in Korea (국내 지진동 특성에 대한 기기 용접 정착부의 비탄성에너지 흡수계수를 고려한 지진취약도 평가)

  • Eem, Seunghyun;Kim, Gungyu;Choi, In-Kil;Kwag, Shinyoung
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.27 no.1
    • /
    • pp.69-75
    • /
    • 2023
  • In Korea, most nuclear power plants were designed based on the design response spectrum of Regulatory Guide 1.60 of the NRC. However, in the case of earthquakes occurring in the country, the characteristics of seismic motions in Korea and the design response spectrum differed. The seismic motion in Korea had a higher spectral acceleration in the high-frequency range compared to the design response spectrum. The seismic capacity may be reduced when evaluating the seismic performance of the equipment with high-frequency earthquakes compared with what is evaluated by the design response spectrum for the equipment with a high natural frequency. Therefore, EPRI proposed the inelastic energy absorption factor for the equipment anchorage. In this study, the seismic performance of welding anchorage was evaluated by considering domestic seismic characteristics and EPRI's inelastic energy absorption factor. In order to reflect the characteristics of domestic earthquakes, the uniform hazard response spectrum (UHRS) of Uljin was used. Moreover, the seismic performance of the equipment was evaluated with a design response spectrum of R.G.1.60 and a uniform hazard response spectrum (UHRS) as seismic inputs. As a result, it was confirmed that the seismic performance of the weld anchorage could be increased when the inelastic energy absorption factor is used. Also, a comparative analysis was performed on the seismic capacity of the anchorage of equipment by the welding and the extended bolt.

Study on Flow Properties and Rheology of Slag from Coal Gasification Based on Crystalline Phase Formation (결정상 분석을 통한 석탄가스화기 Slag 특성 연구)

  • Koo, Jahyung;Paek, Minsu;Yoo, Jeongseok;Kim, Youseok
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.73.1-73.1
    • /
    • 2011
  • 분류층 석탄가스화기에서 슬래그의 원활한 배출은 가스화 플랜트 운전 및 성능에 중대한 영향을 미치는 것으로 알려져 있다. 가스화기의 운전 온도에서 슬래그 점도가 일정수준 이상인 경우에는 가스화기 하부 슬래그 배출구 막힘 현상을, 일정 수준 이하일 경우에는 Membrane wall의 slag 두께가 얇아져 가스화기 수냉벽에 열적 악영향을 미친다. 가스화기의 안정적인 운전을 위한 석탄 선정 시, 석탄 슬래그의 용융온도 및 점도의 파악이 중요하다. 일반적으로 석탄슬래그의 용융온도는 ASTM D-1857 절차에 따른 환원분위기에서의 회융유온도(FT)측정을 통해, 점도는 고온점도측정 실험을 통해 분석하고 있다. 이런 실험적인 분석방법은 다양한 슬래그조성 및 온도 변화에 따른 영향을 살펴보기에는 많은 시간과 비용이 발생하므로 슬래그조성 및 온도 변화에 따른 용융온도 및 점도 예측이 필요하다. 본 연구에서는 200여 탄종의 회용유점 측정 결과와 FactSage에서 예측되는 슬래그 결정상 생성 및 회용유점(FT)에서의 고체분율과의 상관관계를 분석하였다. 이를 바탕으로 다양한 Ash 조성(SiO2, Al2O3, Fe2O3, CaO)에 대한 회용유점(FT)을 예측할 수 있는 프로그램을 개발하였다. 또한 50여 탄종의 슬래그 점도 측정 결과를 Facsage에서 예측되는 결정상 종류 및 Ash 조성을 기준으로 분류하였다. 결정상 종류 및 Ash 조성을 기준으로 기존 슬래그점도예측모델를 활용하여 보다 정확한 슬래그 점도 예측 프로세스를 개발하였다. 본 연구 결과는 플랜트 운전 결과 검증을 통하여 석탄 가스화 플랜트에 적합한 석탄의 선정, 혼탄 비율 및 첨가제 투입량 결정을 위해 활용될 것으로 기대된다.

  • PDF

Implementation of Real-time Data Stream Processing for Predictive Maintenance of Offshore Plants (해양플랜트의 예지보전을 위한 실시간 데이터 스트림 처리 구현)

  • Kim, Sung-Soo;Won, Jongho
    • Journal of KIISE
    • /
    • v.42 no.7
    • /
    • pp.840-845
    • /
    • 2015
  • In recent years, Big Data has been a topic of great interest for the production and operation work of offshore plants as well as for enterprise resource planning. The ability to predict future equipment performance based on historical results can be useful to shuttling assets to more productive areas. Specifically, a centrifugal compressor is one of the major piece of equipment in offshore plants. This machinery is very dangerous because it can explode due to failure, so it is necessary to monitor its performance in real time. In this paper, we present stream data processing architecture that can be used to compute the performance of the centrifugal compressor. Our system consists of two major components: a virtual tag stream generator and a real-time data stream manager. In order to provide scalability for our system, we exploit a parallel programming approach to use multi-core CPUs to process the massive amount of stream data. In addition, we provide experimental evidence that demonstrates improvements in the stream data processing for the centrifugal compressor.

Optimization of an Ozone-based Advanced Oxidation Process for the Simultaneous Removal of Particulate Matters and Nitrogen Oxides in a Semiconductor Fabrication Process (반도체 제조공정 미세먼지-질소산화물 동시 저감을 위한 오존 고속산화공정 최적화 연구)

  • Uhm, Sunghyun;Lee, Seung Jun;Ko, Eun Ha;Hong, Gi Hoon;Hwang, Sangyeon
    • Applied Chemistry for Engineering
    • /
    • v.32 no.6
    • /
    • pp.659-663
    • /
    • 2021
  • 10 m3/min (CMM) multi-pollutants abatement system was successfully developed by effectively integrating ozone oxidation, wet scrubbing, and wet electrostatic precipitation for the simultaneous removal of particulate matters (PMs) and NOx in a semiconductor fabrication process. The sophisticated control and optimization of operating parameters were conducted to maximize the destruction and removal efficiency of NOx. In particular, the stability test of a wet electrostatic precipitator was carried out in parallel for 30 days to validate the reliability of core parts including a power supply. An O3/NO ratio, which is the most important operating parameter, was optimized to be about 1.5 and the optimization of wet scrubbing with a reducing agent made it possible to analyze the contribution of neutralization reaction.