DOI QR코드

DOI QR Code

Optimization of an Ozone-based Advanced Oxidation Process for the Simultaneous Removal of Particulate Matters and Nitrogen Oxides in a Semiconductor Fabrication Process

반도체 제조공정 미세먼지-질소산화물 동시 저감을 위한 오존 고속산화공정 최적화 연구

  • Uhm, Sunghyun (Plant Process Development Center, Institute for Advanced Engineering) ;
  • Lee, Seung Jun (R&D Center, Plasma Technology Co. Ltd.) ;
  • Ko, Eun Ha (R&D Center, Plasma Technology Co. Ltd.) ;
  • Hong, Gi Hoon (Plant Process Development Center, Institute for Advanced Engineering) ;
  • Hwang, Sangyeon (Plant Process Development Center, Institute for Advanced Engineering)
  • 엄성현 (고등기술연구원 플랜트공정개발센터) ;
  • 이승준 ((주)플라즈마텍 부설연구소) ;
  • 고은하 ((주)플라즈마텍 부설연구소) ;
  • 홍기훈 (고등기술연구원 플랜트공정개발센터) ;
  • 황상연 (고등기술연구원 플랜트공정개발센터)
  • Received : 2021.10.14
  • Accepted : 2021.11.08
  • Published : 2021.12.10

Abstract

10 m3/min (CMM) multi-pollutants abatement system was successfully developed by effectively integrating ozone oxidation, wet scrubbing, and wet electrostatic precipitation for the simultaneous removal of particulate matters (PMs) and NOx in a semiconductor fabrication process. The sophisticated control and optimization of operating parameters were conducted to maximize the destruction and removal efficiency of NOx. In particular, the stability test of a wet electrostatic precipitator was carried out in parallel for 30 days to validate the reliability of core parts including a power supply. An O3/NO ratio, which is the most important operating parameter, was optimized to be about 1.5 and the optimization of wet scrubbing with a reducing agent made it possible to analyze the contribution of neutralization reaction.

반도체 제조공정에서 발생하는 미세먼지와 질소산화물 동시처리를 위하여 오존산화, 습식중화 및 습식전기집진 기술들을 직접화한 10 CMM급 복합오염물질 제거시스템을 개발하였으며, NOx 제거효율 증대를 위한 공정변수 제어 및 최적화를 진행하였다. 특히, 전원공급장치를 포함한 습식전기집진장치 핵심부품 안정성 평가를 위해 30일 동안의 장기운전도 병행하였다. 오존산화 기반 DeNOx 공정에서 가장 중요한 운전변수인 O3/NO 비율은 1.5 부근에서 최적화하였으며, 습식중화 공정의 운전변수를 최적화하여 중화반응에 의한 제거효율 기여도를 확인하였다.

Keywords

Acknowledgement

본 연구는 산업통상자원부(MOTIE)의 재원으로 한국산업기술평가관리원(KEIT)의 지원을 받아 수행한 연구결과입니다. (No. 20009414)

References

  1. H-W. Park, W. B. Cha, and S. Uhm, Highly Efficient Thermal Plasma Scrubber Technology for the Treatment of Perfluorocompounds (PFCs), Appl. Chem. Eng., 29, 10-17 (2018). https://doi.org/10.14478/ACE.2017.1127
  2. H. Yamasaki, Y. Koizumi, T. Kuroki, and M. Okubo, Plasma-Chemical Hybrid NOx Removal in Flue Gas from Semiconductor Manufacturing Industries Using a Blade-Dielectric Barrier-Type Plasma Reactor, Energies, 12, 2717 (2019). https://doi.org/10.3390/en12142717
  3. S. Uhm, G. H. Hong, and S. Hwang, An Ozone-based Advanced Oxidation Process for an Integrated Air Pollution Control System, Appl. Chem. Eng., 32, 237-242 (2021). https://doi.org/10.14478/ACE.2021.1035
  4. H-W. Park, and S. Uhm, Various Technologies for Simultaneous Removal of NOx and SO2 from Flue Gas, Appl. Chem. Eng., 28, 607-618 (2017). https://doi.org/10.14478/ACE.2017.1092
  5. F. Lin, Z. Wang, Z. Zhang, Y. He, Y. Zhu, J. Shao, D. Yuan, G. Chen, and K. Cen, Flue gas treatment with ozone oxidation: An overview on NOx, organic pollutants, and mercury, Chem. Eng. J., 382, 123030 (2020). https://doi.org/10.1016/j.cej.2019.123030
  6. R. Ji, J. Wang, W. Xu, X. Liu, T. Zhu, C. Yan, and J. Song, Study on the Key Factors of NO Oxidation Using O3: The Oxidation Product Composition and Oxidation Selectivity, Ind. Eng. Chem. Res., 57, 14440-14447 (2018). https://doi.org/10.1021/acs.iecr.8b03597
  7. Z. Han, T. Zou, J. Wang, J. Dong, Y. Deng, and X. Pan, A Novel Method for Simultaneous Removal of NO and SO2 from Marine Exhaust Gas via In-Site Combination of Ozone Oxidation and Wet Scrubbing Absorption, J. Mar. Sci. Eng., 8, 943 (2020). https://doi.org/10.3390/jmse8110943
  8. M. S. Kang, J. Shin, T. U Yu, and J. Hwang, Simultaneous removal of gaseous NOx and SO2 by gas-phase oxidation with ozone and wet scrubbing with sodium hydroxide, Chem. Eng. J., 381, 122601 (2020). https://doi.org/10.1016/j.cej.2019.122601
  9. Z. Han, J. Wang, T. Zou, D. Zhao, C. Gao, J. Dong, and X. Pan, NOx Removal from Flue Gas Using an Ozone Advanced Oxidation Process with Injection of Low Concentration of Ethanol: Performance and Mechanism, Energ. Fuels, 34, 2080-2088 (2020). https://doi.org/10.1021/acs.energyfuels.9b03839
  10. F. Lin, Z. Wang, Q. Ma, Y. He, R. Whiddon, Y. Zhu, and J. Liu, N2O5 formation mechanism during the ozone-based low-temperature oxidation deNOx process, Energ. Fuel, 30, 5101-5107 (2016). https://doi.org/10.1021/acs.energyfuels.6b00824
  11. J. Kuropka, Removal of nitrogen oxides from flue gases in a packed column, Environ. Prot. Eng., 37, 13-22 (2011).