• Title/Summary/Keyword: 복합재층

Search Result 3, Processing Time 0.018 seconds

A Study on Analysis Method to Evaluate Influence of Damage on Composite Layer in Type3 Composite Cylinder (Type3 복합재료 압력용기의 복합재층 손상에 따른 영향성 평가를 위한 해석기법에 관한 연구)

  • Lee, Kyo-Min;Park, Ji-Sang;Lee, Hak-Gu;Kim, Yeong-Seop
    • Composites Research
    • /
    • v.23 no.6
    • /
    • pp.7-13
    • /
    • 2010
  • Type3 cylinder is a composite pressure vessel fully over-wrapped with carbon/epoxy composite layers over an aluminum liner, which is the most ideal and safe high pressure gas container for CNG vehicles due to the lightweight and the leakage-before-burst characteristics. During service in CNG vehicle, if a fiber cut damage occurs in outer composite layers, it can degrade structural performance, reducing cycling life from the original design life. In this study, finite element modeling and analysis technique for the composite cylinder with fiber-cut crack damage is presented. Because FE analysis of type3 cylinder is path dependant due to plastic deformation of aluminum liner in autofrettage process, method to introduce a crack into FE model affect analysis result. A crack should be introduced after autofrettage in analysis step considering real circumstances where crack occurs during usage in service. For realistic simulation of this situation, FE modeling and analysis technique introducing a crack in the middle of analysis step is presented and the results are compared with usual FE analysis which has initial crack in the model from the beginning of analysis. Proposed analysis technique can be used effectively in the evaluation of influence of damage on composite layers of type3 cylinder and establish inspection criteria of composite cylinder in service.

Design and Analysis of Electromagnetic Wave Absorbing Structure Using Layered Composite Plates (적층 복합재 판을 이용한 전자기파 흡수 구조체의 설계)

  • 오정훈;홍창선;오경섭;김천곤;이동민
    • Composites Research
    • /
    • v.15 no.2
    • /
    • pp.18-23
    • /
    • 2002
  • The absorption and the interference shielding of the problems thor both commercial and military purposes. In this study, the minimization of the electromagnetic wale reflections using composite layers with different dielectric properties was performed. Dielectric constants were measured for glass/epoxy composites containing conductive carbon blacks and carbon/epoxy fabric composites. Using the measured permittivities of the composites having various carbon black contents, the optimal electromagnetic wave absorbing structure in X-band(8.2GHz-12.4GHz) was determined. The optimal multi-layered composite plates have the thickness of 2.6mm. The maximum reflection loss is -30dB at 10GHz, and the bandwidth haying the absorptivity lower than -l0dB is about 2GHz.

Optimal Design for CNG Composite Vessel Using Coupled Model with Liner and Composite Layer (복합모델을 이용한 CNG 복합재 압력용기 최적설계)

  • Bae, Jun-Ho;Lee, Hyun-Woo;Kim, Moon-Saeng;Kim, Chul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.9
    • /
    • pp.1012-1019
    • /
    • 2012
  • In this study, CNG composite vessel is analyzed by using coupled model with liner and composite layer. For the coupled model, a method using theoretical analysis and FEA is suggested: elastic solution for laminated tube is used for theoretical analysis of the composite vessel, FEA is performed to the model of CNG composite vessel in actual conditions. On the basis of these results, optimal thickness and winding angle of the composite layer considering the material properties and thickness of the liner are determined. The results of theoretical analysis and FEA are compared with those carried out in previous studies for verifying the suggested analysis method.