• Title/Summary/Keyword: 복소 변수

Search Result 56, Processing Time 0.029 seconds

Accuracy improvement of injection parameters for optical complex signal generation using optical injection-locked semiconductor laser (광 주입 파장 잠금 반도체 레이저를 이용한 광학 복소 신호 생성시의 주입 매개 변수 정확도 향상)

  • Cho, Jun-Hyung;Sung, Hyuk-Kee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.3
    • /
    • pp.478-485
    • /
    • 2021
  • An injection locking technology of a semiconductor laser is a promising technology to generate optical complex signals by adjusting optical injection parameters. The extraction of the precise injection parameters plays a key role in the generation of the optical complex signal. Rate equations of semiconductor lasers under optical injection are commonly used to map the injection parameters and the corresponding optical complex signal. The accuracy of the generated optical complex signal on the injection parameters is limited since the rate equations require a locking map-based interpolation method. We propose a novel analytic method, namely rate equation-based direct extraction method, to directly calculate the injection parameters without relying on the locking map-based interpolation method. We achieved 103-times improvement of the signal accuracy by using the proposed method compared to locking-map based interpolation method.

Complex-Channel Blind Equalization Using Cross-Correntropy (상호 코렌트로피를 이용한 복소 채널 블라인드 등화)

  • Kim, Nam-Yong
    • Journal of Internet Computing and Services
    • /
    • v.11 no.5
    • /
    • pp.19-26
    • /
    • 2010
  • The criterionmaximizing cross-correntropy (MCC) of two different random variables has yielded superior performance comparing to mean squared error criterion. In this paper we present a complex-valued blind equalizer algorithm for QAM and complex channel environments based on cross-correntropy criterion which uses, as two variables, equalizer output PDF and Parzen PDF estimate of a self-generated symbol set. Simulation results show significantly enhanced performance of symbol-point concentration with no phase rotation in complex-channel communication.

Target Classification Algorithm Using Complex-valued Support Vector Machine (복소수 SVM을 이용한 목표물 식별 알고리즘)

  • Kang, Youn Joung;Lee, Jaeil;Bae, Jinho;Lee, Chong Hyun
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.4
    • /
    • pp.182-188
    • /
    • 2013
  • In this paper, we propose a complex-valued support vector machine (SVM) classifier which process the complex valued signal measured by pulse doppler radar (PDR) to identify moving targets from the background. SVM is widely applied in the field of pattern recognition, but features which used to classify are almost real valued data. Proposed complex-valued SVM can classify the moving target using real valued data, imaginary valued data, and cross-information data. To design complex-valued SVM, we consider slack variables of real and complex axis, and use the KKT (Karush-Kuhn-Tucker) conditions for complex data. Also we apply radial basis function (RBF) as a kernel function which use a distance of complex values. To evaluate the performance of the complex-valued SVM, complex valued data from PDR were classified using real-valued SVM and complex-valued SVM. The proposed complex-valued SVM classification was improved compared to real-valued SVM for dog and human, respectively 8%, 10%, have been improved.

Adjoint Variable Method combined with Complex Variable for Structural Design Sensitivity (보조변수법과 복소변수를 연동한 설계 민감도 해석 연구)

  • Kim, Hyun-Gi;Cho, Maeng-Hyo
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.418-423
    • /
    • 2008
  • Among various sensitivity evaluation techniques, semi-analytical method is quite popular since this method is more advantageous than analytical method and global finite difference method. However, SAM reveals severe inaccuracy problem when relatively large rigid body motions are identified for individual elements. Such errors result from the numerical differentiation of the pseudo load vector calculated by the finite difference scheme. In the present study, the adjoint variable method combined with complex variable is proposed to obtain the shape and size sensitivity for structural optimization. The complex variable can present accurate results regardless of the perturbation size as well as easy to be implemented. Through a few numerical examples of the static problem for the structural sensitivity, the efficiency and reliability of the adjoint variable method combined with complex variable is demonstrated.

  • PDF

Characterization of PEMFC Electrode Structures by Complex Capacitance Analysis of EIS (임피던스 복소캐패시턴스법에 의한 PEMFC 전극 구조 분석)

  • Jang, Jong-Hyun;Son, Ji-Hwan;Kim, Hyoung-Juhn;Han, Jong-Hee;Lim, Tae-Hoon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.213-216
    • /
    • 2007
  • PEMFC의 전기화학적 반응은 촉매, 이오노머, 기공이 만나는 삼상계면에서만 일어나므로, 전극 구조의 최적화가 성능 향상 및 장기안정성 확보에 있어 매우 중요하다. 본 연구에서는 전극 미세구조를 실시간으로 분석하기 위해 임피던스 복소캐패시턴스법을 도입하고자 하였다. 즉, PEMFC의 양극에 질소를 공급하면 0.4 V 부근에서 전기이중층 형성 반응만이 일어나는 것을 확인하였으며, 이때 음극에는 수소를 공급하여 기준전극 및 반대전극으로 사용하였다. 측정된 임피던스를 복소캐패시턴스로 변환하고 허수부를 주파수에 대해 도시하면 피크 형태의 곡선이 얻어지는데, (1) 피크 면적은 전극/전해질의 계면면적, (2) 피크 위치는 이오노머 네트워크에 의한 수소이온 전도 특성, (3) 피크 폭은 다공성 구조의 균일도를 각각 나타내므로, 피팅 없이 직접적인 해석이 가능하다는 장점을 가진다. 반면, 기존의 Nyquist 도시법은 피팅에 의한 분석이 필요하며, 전극층의 불균일한 구조로 인해 단순한 등가회로 구성이 어려운 문제점을 가진다. 최종적으로, MEA 제작 조건 및 운전 조건을 변수로 하여 임피던스를 측정하고 복소캐패시턴스 분석을 수행하여, 퇴화 경로를 규명하고 운전 조건을 최적화하고자 하였다.

  • PDF

A new algorithm for SIP parameter estimation from multi-frequency IP data: preliminary results (다중 주파수 IP 자료를 이용한 SIP 변수 추정)

  • Son, Jeong-Sul;Kim, Jung-Ho;Yi, Myeong-Jong
    • Geophysics and Geophysical Exploration
    • /
    • v.10 no.1
    • /
    • pp.60-68
    • /
    • 2007
  • Conventional analysis of spectral induced polarization (SIP) data consists of measuring impedances over a range of frequencies, followed by spectral analysis to estimate spectral parameters. For the quantitative and accurate estimation of subsurface SIP parameter distribution, however, a sophisticated and stable inversion technique is required. In this study, we have developed a two-step inversion approach to obtain the two-dimensional distribution of SIP parameters. In the first inversion step, all the SIP data measured over a range of frequencies are simultaneously inverted, adopting cross regularisation of model complex resistivities at each frequency. The cross regularisation makes it possible to enhance the noise characteristics of the inversion by imposing a strong assumption, that complex resistivities should show similar characteristics over a range of frequencies. In numerical experiments, we could verify that our inversion approach successfully reduced inversion artefacts. As a second step, we have also developed an inversion algorithm to obtain SIP parameters based on the Cole-Cole model, in which frequency-dependent complex resistivities from the first step are inverted to obtain a two-dimensional distribution of SIP parameters. In numerical tests, the SIP parameter images showed a fairly good match with the exact model, which suggests that SIP imaging can provide a very useful subsurface image to complement resistivity.

Adjoint Variable Method Combined with Complex Variable for Structural Design Sensitivity (보조변수법과 복소변수를 연동한 설계 민감도 해석 연구)

  • Kim, Hyun-Gi;Cho, Maeng-Hyo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.3
    • /
    • pp.243-250
    • /
    • 2009
  • The adjoint variable method can reduce computation time and save computer resources because it can selectively provide the sensitivity information for the positions that designers wish to measure. However, the adjoint variable method commonly employs exact analytical differentiation with respect to the design variables. It can be cumbersome to precisely differentiate every given type of finite element. This trouble can be overcome only if the numerical differentiation scheme can replace this exact manner of differentiation. But, the numerical differentiation scheme causes of severe inaccuracy due to the perturbation size dilemma. For assuring the accurate sensitivity without any dependency of perturbation size, this paper employs a complex variable that has been mainly used for computational fluid dynamics problems. The adjoint variable method combined with complex variables is applied to obtain the shape and size sensitivity for structural optimization. Numerical examples demonstrate that the proposed method can predict stable sensitivity results and that its accuracy is remarkably superior to traditional sensitivity evaluation methods.

Numerical Analysis of the Complex Permittivity of MWNT added Epoxy Depending on Agglomeration Size (에폭시 내부의 MWNT 응집 크기에 따른 복소유전율 변화의 해석적 관찰)

  • Shin, Jae-Hwan;Jang, Hong-Kyu;Choi, Won-Ho;Song, Tae-Hoon;Kim, Chun-Gon;Lee, Woo-Yong
    • Composites Research
    • /
    • v.27 no.5
    • /
    • pp.190-195
    • /
    • 2014
  • This paper predicts the complex permittivity of MWNT added epoxy depending on agglomeration by numerical analysis. 1wt% MWNT added epoxy specimen is prepared using 3-roll-mill method and its complex permittivity is measured in X-band (8.2~12.4 GHz) using freespace measurement system. The analytic model is comprised of cube epoxy and perfect sphere agglomeration. The complex permittivity of the agglomeration model is predicted by complex permittivity mixing rule using the measured complex permittivity of epoxy and 1 wt% MWNT added epoxy. Commercial electromagnetic analysis software, CST, is used to obtain S-parameter of the analytic model and MATLAB code is used to calculate complex permittivity from the S-parameter. It is confirmed that the complex permittivity increases when the agglomeration size decreases.

Noise Removal Using Complex Wavelet and Bernoulli-Gaussian Model (복소수 웨이블릿과 베르누이-가우스 모델을 이용한 잡음 제거)

  • Eom Il-Kyu;Kim Yoo-Shin
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.43 no.5 s.311
    • /
    • pp.52-61
    • /
    • 2006
  • Orthogonal wavelet tansform which is generally used in image and signal processing applications has limited performance because of lack of shift invariance and low directional selectivity. To overcome these demerits complex wavelet transform has been proposed. In this paper, we present an efficient image denoising method using dual-tree complex wavelet transform and Bernoulli-Gauss prior model. In estimating hyper-parameters for Bernoulli-Gaussian model, we present two simple and non-iterative methods. We use hypothesis-testing technique in order to estimate the mixing parameter, Bernoulli random variable. Based on the estimated mixing parameter, variance for clean signal is obtained by using maximum generalized marginal likelihood (MGML) estimator. We simulate our denoising method using dual-tree complex wavelet and compare our algorithm to well blown denoising schemes. Experimental results show that the proposed method can generate good denoising results for high frequency image with low computational cost.

Applicability Analysis on Estimation of Spectral Induced Polarization Parameters Based on Multi-objective Optimization (다중목적함수 최적화에 기초한 광대역 유도분극 변수 예측 적용성 분석)

  • Kim, Bitnarae;Jeong, Ju Yeon;Min, Baehyun;Nam, Myung Jin
    • Geophysics and Geophysical Exploration
    • /
    • v.25 no.3
    • /
    • pp.99-108
    • /
    • 2022
  • Among induced polarization (IP) methods, spectral IP (SIP) uses alternating current as a transmission source to measure amplitudes and phase of complex electrical resistivity at each source frequency, which disperse with respect to source frequencies. The frequency dependence, which can be explained by a relaxation model such as Cole-Cole model or equivalent models, is analyzed to estimate SIP parameters from dispersion curves of complex resistivity employing multi-objective optimization (MOO). The estimation uses a generic algorithm to optimize two objective functions minimizing data misfits of amplitude and phase based on Cole-Cole model, which is most widely used to explain IP relaxation effects. The MOO-based estimation properly recovered Cole-Cole model parameters for synthetic examples but hardly fitted for the real laboratory measures ones, which have relatively smaller values of phases (less than about 10 mrad). Discrepancies between scales for data misfits of amplitude and phase, used as parameters of MOO method, and it is in necessity to employ other methods such as machine learning, which can deal with the discrepancies, to estimate SIP parameters from dispersion curves of complex resistivity.