• Title/Summary/Keyword: 복소수응력함수

Search Result 6, Processing Time 0.019 seconds

Stress Intensity Factors for Branched Edge Cracks (가지친 표면크랙의 응력확대계수)

  • 구인회
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.2
    • /
    • pp.257-264
    • /
    • 1986
  • 무한평판에 묻혀진 크랙에 대한 응력확대계수를 결정하는 전위분포법을 반무한 평판에서의 표면크랙에 확장 적용하였다. 이를 위해 반평면에서의 전위응력의 기본 해가 간단한 복소수 응력함수형태로 얻어졌다. 평형을 이루는 절편적인 분포로부터 응력확대의 계수를 계산하는 새로운 방식을 제안하였으며, 수직표면 크랙과 묻혀진 경사크랙에 대한 기존해와 이 방법의 결과가 상호 비교되었다. 경사진 표면크랙에 대한 계산결과는 유한평판에서의 기존하는 Mapping Collocation 해석과 비교되어 좋은 일치를 보여 주었다. 구부러진 크랙과 대칭으로 가지친 크랙에 대해서는 표면크랙과 묻혀진 크랙사이에 상당한 차이가 있음이 나타났다.

Hybrid Stress Analysis around a Circular Hole in a Tensile Plate by Use of Phase Shifting Photoelasticity (광탄성 위상이동법에 의한 인장시편 원형 구멍주위 하이브리드 응력해석)

  • Baek, Tae-Hyun;Lee, Choon-Tae;Yang, Min-Bok
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.27 no.1
    • /
    • pp.15-22
    • /
    • 2007
  • A hybrid experimental-numerical method is presented for determining the stresses around a circular hole in a finite-width, tensile loaded plate. Measured fringe orders along straight lines provided the input information on the external boundary of the hybrid element. In order to see the effects of varying stress field, different numbers of terms in a power-series representation of the complex type conformal mapping stress function were tested. For qualitative comparison, actual isochromatic fringes were compared with reconstructed theoretical fringes using stress-optic law. For quantitative comparison, relative errors and standard deviations with respective to relative errors were analyzed for all measured points by changing the number of terms of stress function. The hybrid results are highly comparable with those predicted by FEA. The results show that this approach is effective and promising because isochromatic data along the straight lines in photoelasticity can be conveniently measured by use of phase shifting photoelasticity.

Stress Distribution in the Vicinity of a Crack Tip in a Plate under Tensile Load Using Displacement Data of Finite Element Method (유한요소 변위값을 이용한 인장하중 판재 균열선단 주위의 응력분포 해석)

  • Baek, Tae-Hyun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.10
    • /
    • pp.84-91
    • /
    • 2008
  • Due to the complexity of the engineering problems, it is difficult to obtain directly the stress field around the crack tip by theoretical derivation. In the paper, the hybrid method is employed to calculate full-field stress around the crack tip in uni-axially leaded finite width tensile plate, using the displacement data of given points calculated by finite element method as input data. The method uses complex variable formulations involving conformal mappings and analytical continuity. In order to accurately compare calculated fringes with experimental ones, both actual and reconstructed photoelastic fringe patterns are two times multiplied and sharpened by digital image processing. Reconstructed fringes by hybrid method are quite comparable to actual fringes. The experimental results indicate that Mode I stress intensity factor analyzed by the hybrid method are accurate within a few percent compared with ones obtained by empirical equation and finite element analysis.

Hybrid Photoelastic Stress Analysis Around a Central Crack Tip in a Tensile Loaded Plate Using Isochromatic Data (등색프린지 데이터를 이용한 인장하중 판재 중앙 균열선단 주위의 하이브리드 광탄성 응력장 해석)

  • Baek, Tae-Hyun;Chen, Lei
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.12
    • /
    • pp.1200-1207
    • /
    • 2007
  • An experimental test is presented for photoelastic stress analysis around a crack tip in tensile loaded plate. The hybrid method coupling photoelastsic fringe inputs calculated by finite element method and complex variable formulations involving conformal mappings and analytical continuity is used to calculate full-field stress around the crack tip in uniaxially loaded, finite width tensile plate. In order to accurately compare calculated fringes with experimental ones, both actual and regenerated photoelastic fringe patterns are two times multiplied and sharpened by digital image processing. Regenerated fringes by hybrid method are quite comparable to actual fringes. The experimental results indicate that Mode I stress intensity factor analyzed by the hybrid method are accurate within three percent compared with ones obtained by empirical equation and finite element analysis.

Hybrid Full-field Stress Analysis around a Circular Hole in a Tensile Loaded Plate using Conformal Mapping and Photoelastic Experiment (등각사상 맵핑 및 광탄성 실험법에 의한 원형구명 주위의 하이브리드 응력장 해석)

  • Baek, Tae-Hyun;Kim, Myung-Soo;Rhee, Ju-Hun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.23 no.6 s.165
    • /
    • pp.988-1000
    • /
    • 1999
  • An experimental study is presented for the effect of number of terms of a pewee series type stress function on stress analysis around a hole in tensile loaded plate. The hybrid method coupling photoelastsic data inputs and complex variable formulations involving conformal mappings and analytical continuity is used to calculate tangential stress on the boundary of the hole in uniaxially loaded, finite width tensile plate. In order to measure isochromatic data accurately, actual photoelastic fringe patterns are two times multiplied and sharpened by digital image processing. For qualitative comparison, actual fringes are compared with calculated ones. For quantitative comparison, percentage errors and standard deviations with respect to percentage errors are caculated for all measured points by changing the number of terms of stress function. The experimental results indicate that stress concentration factors analyzed by the hybrid method are accurate within three percent compared with ones obtained by theoretical and finite element analysis.

Experimental Determination of Complex Moduli and Internal Damping of Laminated Composites (적층 복합재료의 내부감쇠와 복소탄성계수 측정에 관한 연구)

  • Lee, Jae-Hyeok;Park, Se-Man;Kim, Hyeong-Sam
    • Korean Journal of Materials Research
    • /
    • v.8 no.10
    • /
    • pp.905-911
    • /
    • 1998
  • Damping is a property for materials and systems to dissipate energy during periodic deformations. Generally, damping causes stiff decrease in amplitudes and shifts in phases. Also, even at resonance, amplitudes are substantially attenuated. This phenomenon of damping helps in reducing stresses developed during vibrations and consequently improves fatigue lives of materials. In this work internal damping and complex moduli are experimentally determined. An impulse technique is utilized in experiments and cantilever beams are selected as test subjects for the measurements of flextural vibrations since the beams lend themselves easily as simplistic ideal models. A resonance method is employed to determine resonance frequencies which are utilized to compute storage moduli. Also, loss moduli are evaluated from damping capacities and storage moduli. The storage and loss moduli combined yield complex moduli. Finally internal damping is evaluated from bandwidth technique, the real component of the transfer function.

  • PDF