• Title/Summary/Keyword: 벽유동

Search Result 273, Processing Time 0.029 seconds

범용 전산유체 코드를 이용한 봉 다발에서의 난류 유동 수치해석

  • 인왕기;오동석;전태현;정연호
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1997.10a
    • /
    • pp.567-572
    • /
    • 1997
  • 범용 전산유체해석(Computational Fluid Dynamics) 코드인 CFX-F3D를 이용하여 봉 다발에서의 난류 유동 수치해석을 수행하였다 3$\times$3 봉으로 구성된 부수로 사이의 난류 횡류(Crossflow) 혼합유동과 평행한 4개의 봉으로 이루어진 벽 수로에서의 난류 유동구조를 수치적으로 분석하여 각각의 실험결과와 비교하였다. 부수로 횡류 혼합유동의 경우 예측된 주 유동방향 평균 속도분포는 실험결과와 잘 일치하였으나 벽면과 인접한 부수로에서의 난류강도 분포는 다소 큰 차이가 나타났다. 백수로의 경우 수로 중심선 근처의 주 유동방향의 속도변화는 크게 예측되었고 벽 전단응력은 유로가 협소해지는 영역에서 낮게 예측되었으나 전반적으로 실험결과와 유사한 유동특성을 나타냈다. 이 연구는 봉 다발에서의 난류 유동구조에 대한 이해를 증진시킴과 더불어 CFX-F3D 코드를 평가함으로써 향후 지지격자와 임계열유속 증진장치가 부착된 복잡한 형상의 핵연료 다발에서의 유동장 수치해석의 기반을 마련하였다.

  • PDF

The Effect of the Distance Between $CO_2$ Agent Nozzle and Wall ($CO_2$소화제 노즐과 벽간 거리의 영향)

  • Park Chan-Su
    • Fire Science and Engineering
    • /
    • v.18 no.4
    • /
    • pp.27-34
    • /
    • 2004
  • We have conducted a numerical simulation under three-dimensional unsteady conditions in order to analyze the effect of flow and CO₂ mass transfer according to the distance between the CO₂ nozzle of CO₂ fire fighting system and the rear wall in a protection space. Flow fields and CO₂ concentration fields were measured. The different recirculation flow form and wall jet was developed according to increasing the distance between CO₂ nozzles and rear wall. In all the case, CO₂ mass transfer was generated toward the center of a protection space from each walls, but the CO₂ mass fraction of front and rear areas based on CO₂ nozzles showed higher or lower by increasing the distance between CO₂ nozzle and rear wall.

A Study on Viscous Flow around a Pipeline between Parallel Walls by the Numerical Simulation (수치 시뮬레이션을 통한 평판내 파이프라인 주위의 점성유동 연구)

  • Kwag, Seung-Hyun
    • Journal of Navigation and Port Research
    • /
    • v.27 no.5
    • /
    • pp.473-478
    • /
    • 2003
  • Numerical study was made on the flow characteristics around a circular pipeline between parallel walls. The incompressible Navier-Stokes equations were solved by using a third-order upwind differential scheme. When the distance near a wall is small enough, the vortex shedding is almost completely suppressed because of the interaction with the wall boundary layer separation. This study aims to clarify the characteristics of the vortex shedding regime as the body approaches a wall as Reynolds number varies. The feature of separated vorticity dynamics is analyzed at different conditions with particular attention to the interaction between the pipeline wake and the induced separation on the plane walls.

Numerical Analysis of the High-Subsonic Cavity Flows over a Curved Wall (곡면 벽을 지나는 고아음속 공동 유동에 관한 수치해석적 연구)

  • Ye, A Ran;Das, Rajarshi;Kim, Heuy Dong
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.20 no.1
    • /
    • pp.1-7
    • /
    • 2016
  • Most of the work has been done till now focused on flows over wall mounted cavities in a straight wall where the incoming flow is uniform. However, the investigation on such kind of flow over a cavity mounted on the curved walls has been seldom reported in the existing literatures. In the present study, the numerical analysis was performed to investigate the cavity flow mounted on the curved walls. The effects of wall shape, the curvature radius and the flow Mach number, were investigated for high-subsonic flows. The results show that the static pressure of cavity floor increases as the L/R increases. This effect is found to be more significant when the flow Mach number is higher. The cavity drag for the curved walls are higher as compared with that of straight wall.

Flow Changes by Stent Insertion in Fusiform Aneurysm Models (스텐트 삽입에 의한 방추형 동맥류 내부 유동의 변화)

  • 이계한;서남현
    • Journal of Biomedical Engineering Research
    • /
    • v.22 no.6
    • /
    • pp.535-542
    • /
    • 2001
  • Endovascular embolization technique using a steno is currently used to treat the wide neck aneurysm. Since intraaneurysmal flow characteristics affect thrombus formation and embolisation process. flow visualization technique incorporating photochromic dye was used to elucidate hemodynamic changes by stenting Inside the fusiform aneurysm models. Qualitative observation of flow field and measurement of wall shear rates were Performed at five aneurysm wall locations under pulsatile flow. Intraaneurysmal flow motion was reduced and sluggish vortical motion was maintained during late deceleration phase by stenting. Also wall shear rates were reduced and OSI's were increased in the stented model. These flow characteristics Provide hemodynamic environment favorable for thrombus formation and intimal hyperplasia. The results of this study show hemodynamic changes by stenting Promote thrombus formation and aneurysm embolisation.

  • PDF

Mathematical Analysis and Simulation on a Wall-Flow Ceramic Monolith filter trap in CI Engine (CI기관의 벽유동 세라믹 모노리스 필터트랩에 관한 수학적해석 및 시뮬레이션)

  • Han, Y.C.;Choi, K.H.;Bang, S.H.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.2 no.5
    • /
    • pp.58-65
    • /
    • 1994
  • In order to reduce particulate emissions from diesel vehicles, mathematical model is established and analyzed on ceramic wall-flow monolith filter. A wall-flow monolith filter placed in the exhaust stream of a diesel engine can effectively limit the emission of diesel particulates through the monolith. The accumulated particulates can then be periodically combusted inside the monolith by directing hot gas to the monolith while normal engine exhaust is routed around the monolith system. The resulting low flow rates through the monolith require consideration of gas dynamics through the channels as well as particulate combustion to analyze this regeneration process. A mathematical model of the regeneration is formulated as a system of nonlinear partial differential equations describing the conservation of mass, momentum and energy. Numerical solutions are obtained by using a finite difference techniques for the spatial discretization. So we can use filter simulation program for the purpose of filter design and actual filter regeneration

  • PDF

Study on the turbulent structure for two-dimensional recirculating flows by curvature dependent 2-equation model (曲率修正2方程式모델을 利용한 2次元 再循環 亂流 流動構造의 硏究)

  • 박상우;정명균
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.3
    • /
    • pp.444-453
    • /
    • 1987
  • In the present study, a new computational closure model is proposed in order to contain physical models in the k- and .epsilon.- equations. The time scale of the third-order diffusive transport of turbulent kinetic energy in a curved streamline flow field is assumed as a function of a velocity time scale and a curvature time scale, the latter being derived from the analogy between buoyancy and streamline curvature effects on turbulence. The curvature time scale is represented by a combination of Brunt-Vaisala frequency of the curvature instability and the velocity time scale. Besides the modification of diffusive transport time scale, the destruction term in the dissipation rate equation is modeled to incorporate the streamline curvature effect on the dissipation rate of turbulent kinetic energy as a function of the ratio between velocity time scale and curvature time scale. The new curvature dependent 2-equation model is found to yield very good prediction accuracy for the various turbulent recirculating flows. Particurarly, the recovery of the mean velocity profile in the redeveloping region after the reattachment is correctly simulated by the present model.

Heat Transfer Enhancement in Channel Flow by a Streamwise-Periodic Array of Rotating Circular Cylinders (주기적으로 배열된 회전하는 원형 실린더를 이용한 채널유동의 열전달 증진)

  • Jeong, Taekyeong;Yang, Kyung-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.12
    • /
    • pp.999-1008
    • /
    • 2014
  • In this study, we consider the heat transfer characteristics of channel flow in the presence of an infinite streamwise array of equispaced identical rotating circular cylinders. This flow configuration can be regarded as a model representing a micro channel or an internal heat exchanger with cylindrical vortex generators. A numerical parametric study has been carried out by varying Reynolds number based on the bulk mean velocity and the cylinder diameter, and the gap between the cylinders and the channel wall for some selected angular speeds. The presence of the rotating circular cylinders arranged periodically in the streamwise direction causes a significant topological change of the flow, leading to heat transfer enhancement on the channel walls. More quantitative results as well as qualitative physical explanations are presented to justify the effectiveness of varying the gap to enhance heat transfer from the channel walls.

Computations on Passive Control of Normal Shock-Wave/Turbulent Boundary-Layer Interactions (수직충격파와 난류경계층의 간섭유동의 피동제어에 관한 수치 해석)

  • 구병수;김희동
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.5 no.3
    • /
    • pp.25-32
    • /
    • 2001
  • A passive control method of the interaction between a weak normal shock-wave and a turbulent boundary-layer was simulated using two-dimensional Navier-Stokes computations. The inflow Mach number just upstream of the normal shock wave was 1.33. A porous plate wall having a cavity underneath was used to control the shock-wave/turbulent boundary-layer interaction. The flows through the porous holes and inside the cavity were investigated to get a better understanding of the flow physics involved in this kind of passive control method. The present computations were validated by some recent wind tunnel tests. The results showed that downstream of the rear leg of the $\lambda$-shock wave the main stream inflows into the cavity, but upstream of the rear leg of the $\lambda$-shock wave the flow proceeds from the cavity toward to the main stream. The flow through the porous holes did not choke fur the present shock/boundary layer interaction.

  • PDF

층류 박리된 관유동에 관한 실험적 연구

  • 이상준
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.4
    • /
    • pp.937-944
    • /
    • 1990
  • 본 연구에서는 파이프내에 부분 오리피스판을 장착하여 이 장애벽 전후에서 발생하는 유동현상을 박리 전단층의 유동구조와 재부착 경계층을 중심으로 실험적으로 연구하였다. 측정방법으로 유동의 속도장변화를 구하기 위하여 NMR 위상 영상법을 사용하였고, 과망간산칼륨을 염료로 가시화 실험을 수행하여 그 결과를 비교 검토하였 다.