• Title/Summary/Keyword: 베이지안 방법

Search Result 581, Processing Time 0.025 seconds

Reducing Uncertainty of Bayesian Networks by Reducing Variances of Probability Distributions (베이지안 네트워크의 불확실성 감소를 위한 확률분포의 분산 감소 방법)

  • Jung, Sung-Won;Lee, Do-Heon;Lee, Kwang-H.
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2006.10b
    • /
    • pp.238-243
    • /
    • 2006
  • 베이지안 네트워크는 주어진 변수들 사이의 확률적 의존성을 분석하는 데에 널리 사용되어지고 있는 모델이다. 이러한 베이지안 네트워크의 활용에 있어서 베이지안 네트워크의 확실성을 분석하는 방법의 필요성이 대두되어지고 있다. 특히 규모가 큰 베이지안 네트워크 모델을 특정하는 상황에서 주어질 수 있는 학습 데이터의 수가 제한되는 경우나, 주된 관심사가 베이지안 네트워크의 일부 부분에 한정되는 경우에 베이지안 네트워크의 확실성에 대한 분석은 유용하게 사용될 수 있다. 본 논문에서는, 베이지안 네트워크에 존재할 수 있는 불확실성을 언급한 후, 베이지안 네트워크 내의 변수들이 갖는 확률분포의 분산을 이용해 베이지안 네트워크의 불확실성을 정의하는 방법을 제안한다. 간단한 베이지안 네트워크의 예시 모델을 이용하여 제안된 베이지안 네트워크의 불확실성 분석 방법이 유용할 수 있음을 보인다.

  • PDF

Bayesian Automatic Document Categorization Using Apriori-Genetic Algorithm (Apriori-Genetic 알고리즘을 이용한 베이지안 자동 문서 분류)

  • Go, Su-Jeong;Lee, Jeong-Hyeon
    • The KIPS Transactions:PartB
    • /
    • v.8B no.3
    • /
    • pp.251-260
    • /
    • 2001
  • 기존의 베이지안 문서 분류는 문서의 특징 표현에 있어서 단어간의 의미를 정확하게 반영하지 못하는 문제점이 있다. 이러한 문제점을 해결하기 위해, 본 논문에서는 Apriori-Genetic 알고리즘을 이용한 베이지안 문서 분류 방법을 제안한다. Apriori 알고리즘은 단어간의 의미를 반영한 연관 단어의 형태로 문서의 특징을 추출하며 추출된 연관 단어로 연관 단어 지식베이스를 구축한다. Aprrori 알고리즘만으로 연관 단어 지식베이스를 구축할 경우, 지식베이스 안에 부적당한 연관 단어가 포함된다. 따라서 문서 분류의 정확도가 낮아지는 단점이 있다. 이러한 단점을 보완하기 위해, Genetic 알고리즘을 이용하여 연관 단어 지식베이스를 최적화하는 방법을 사용한다. 베이지안 확률을 이용하는 분류자는 최적화된 연관 단어 지식베이스를 기반으로 문서를 클래스별로 분류한다. Apriori-Genetic 알고리즘을 이용한 베이지안 문서 분류의 성능을 평가하기 위해, Apriori 알고리즘을 이용한 베이지안 문서 분류 방법, 역문헌빈도를 사용한 베이지안 문서 분류 방법, 기존의 단순 베이지안 분류 방법과 비교하였다.

  • PDF

Learning Bayesian Network Parameters using Dialogue based User Feedbacks (대화기반 사용자 피드백을 이용한 베이지안 네트워크 파라메터 학습)

  • Lim, Sung-Soo;Lee, Seung-Hyun;Cho, Sung-Bae
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2010.06c
    • /
    • pp.419-422
    • /
    • 2010
  • 사용자와 환경의 변화에 적응하기 위해서 베이지안 네트워크의 다양한 학습 방법들이 연구되고 있다. 기존의 많은 학습방법에서는 학습 데이터로부터 통계적 방법을 통해서 베이지안 네트워크 모델을 학습하는데, 이러한 접근 방법은 학습 데이터를 수집하기 어려운 문제에 적용하기 힘들며, 사용자의 의도를 데이터의 패턴들로만 학습하므로 직접적으로 사용자의 의도를 반영할 수 없다. 본 논문에서는 대화에 기반하여 사용자의 의도를 직접적으로 수집하고, 이로부터 베이지안 네트워크의 파라메터를 학습하는 방법을 연구한다. 제안하는 방법에서는 사용자와의 대화를 통해서 현재의 모델의 잘못된 점 혹은 개선점을 직접적으로 입력 받고, 이를 바탕으로 베이지안 네트워크 모델을 수정하여 데이터의 수집 없이 빠른 시간에 사용자가 원하는 모델을 학습 할 수 있다. 기존의 통계적 기법을 이용한 대표적인 베이지안 네트워크 파라메터 학습 방법인 최대우도 추정(Maximum Likelihood Estimation; MLE) 방법과 제안하는 방법을 비교하여 제안하는 방법의 유용성을 확인한다.

  • PDF

Automatic Construction of Script-adapt ive Bayesian Networks for Topic-Inference of Conversational Agent (대화형 에이전트의 주제추론을 위한 스크립트 적응적 베이지안 네트워크 자동 생성)

  • 임성수;조성배
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2004.04b
    • /
    • pp.577-579
    • /
    • 2004
  • 인터넷을 통한 정보 제공이 늘어남에 따라서 사용자가 원하는 정보를 손쉽게 얻기 위한 .연구가 활발히 진행되고 있으며. 이러한 연구 중 하나가 대화형 에이전트이다. 최근 대화형 에이전트에서 사용자 질의의 주제 추론을 위하여 베이지안 네트워크가 적용되었다 하지만 베이지안 네트워크의 설계는 많은 시간이 소요되며, 스크립트(대화를 위한 데이터베이스)의 추가 변경시에는 베이지안 네트워크도 같이 수정해야 하는 번거로움이 있어 대화형 에이전트의 확장성을 저해하고 있다. 본 논문에서는 스크립트로부터 베이지안 네트워크를 자동으로 생성하여 베이지안 네트워크를 이용한 대화형 에이전트의 확장성을 높이는 방법을 제안하다. 제안하는 방법은 베이지안 네트워크의 구성 노드를 계층적으로 설계하고. Noisy-OR gate를 사용하여 베이지안 네트워크의 조건부 확률 테이블을 계산한다. 피험자 10명이 대화형 에이전트를 위한 베이지안 네트워크를 수동 설계한 것과 비교하여 제안하는 방법의 유용성을 확인하였다.

  • PDF

Weighted Bayesian Automatic Document Categorization Based on Association Word Knowledge Base by Apriori Algorithm (Apriori알고리즘에 의한 연관 단어 지식 베이스에 기반한 가중치가 부여된 베이지만 자동 문서 분류)

  • 고수정;이정현
    • Journal of Korea Multimedia Society
    • /
    • v.4 no.2
    • /
    • pp.171-181
    • /
    • 2001
  • The previous Bayesian document categorization method has problems that it requires a lot of time and effort in word clustering and it hardly reflects the semantic information between words. In this paper, we propose a weighted Bayesian document categorizing method based on association word knowledge base acquired by mining technique. The proposed method constructs weighted association word knowledge base using documents in training set. Then, classifier using Bayesian probability categorizes documents based on the constructed association word knowledge base. In order to evaluate performance of the proposed method, we compare our experimental results with those of weighted Bayesian document categorizing method using vocabulary dictionary by mutual information, weighted Bayesian document categorizing method, and simple Bayesian document categorizing method. The experimental result shows that weighted Bayesian categorizing method using association word knowledge base has improved performance 0.87% and 2.77% and 5.09% over weighted Bayesian categorizing method using vocabulary dictionary by mutual information and weighted Bayesian method and simple Bayesian method, respectively.

  • PDF

Learning Predictive Model of Memory Landmarks based on Bayesian Network Using Mobile Context Log (모바일 컨텍스트 로그를 사용한 베이지안 네트워크 기반의 랜드마크 예측 모델 학습)

  • Lee Byung-Gil;Cho Sung-Bae
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2005.11b
    • /
    • pp.550-552
    • /
    • 2005
  • 유비쿼터스 환경의 발달과 함께 모바일 장비에서 수집되어지는 컨텍스트 로그를 활용한 연구가 활발히 진행되고 있다. 하지만 기존의 컨텍스트 정보를 사용한 연구는 사용자 모델링에 그 초점을 맞추거나 단순하게 수집된 정보를 정리하여 한눈에 알아보기 쉽게 보여주는 정도에 그치고 있다. 본 논문에서는 사용자에게 새로운 서비스를 제공하기 위한 방법으로서 모바일 컨텍스트 로그와 외부 센서를 통해 정보를 수집하여 학습한 베이지안 네트워크를 이용하여 랜드마크를 찾아내는 예측 모델을 제안한다. 베이지안 네트워크 설계는 사전에 수집된 컨텍스트 정보를 요일과 주별로 분류하여 각각에 대한 베이지안 네트워크를 cross validation하여 랜드마크 예측에 대한 정확도를 평가하였다. 그리고 분류에서 가장 많이 사용하고 있는 SVM 방법을 사용하여 제안한 방법과의 성능을 비교평가하였다. 랜드마크 예측에 대한 정확도는 주간별로 설계한 베이지안 네트워크보다 요일별로 설계한 베이지안 네트워크가 랜드마크를 예측하는데 정화도가 높음을 확인하였고, 베이지안 네트워크를 사용한 방법이 SVM을 사용한 방법보다. 예측에 한 정확성이 우수하였다.

  • PDF

머신러닝을 위한 베이지안 방법론: 군집분석을 중심으로

  • Kim, Yong-Dae;Jeong, Gu-Hwan
    • Information and Communications Magazine
    • /
    • v.33 no.10
    • /
    • pp.60-64
    • /
    • 2016
  • 본고에서는 베이지안 기계학습 방법론에 대해서 간략히 살펴본다. 특히, 복잡한 자료들 사이의 관계를 규명하는 것이 목적이며 비지도학습(unsupervised learning)의 한 분야인 군집분석에서 베이지안 방법론들이 어떻게 사용되어지는지를 설명한다. 군집의 수를 사전에 아는 경우에 사용되는 모수적 베이지안 방법을 간단하게 설명하고, 군집의 수까지 추론 할 수 있는 비모수 베이지안방법에 대해서 자세하게 다룬다.

An Efficient Learning Method for Large Bayesian Networks using Clustering (클러스터링을 이용한 효율적인 대규모 베이지안 망 학습 방법)

  • Jung Sungwon;Lee Kwang H.;Lee Doheon
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2005.07b
    • /
    • pp.700-702
    • /
    • 2005
  • 본 논문에서는 대규모 베이지안 망을 빠른 시간 안에 학습하기 위한 방법으로, 클러스터링을 이용한 방법을 제안한다. 제안하는 방법은 베이지안 구조 학습에 있어서 DAG(Directed Acyclic Graph)를 탐색하는 영역을 제한하기 위해 클러스터링을 사용한다. 기존의 베이지안 구조 학습 방법들이 고려하는 후보 DAG의 수가 전체 노드 수에 의해 제한되는 데 반해, 제안되는 방법에서는 미리 정해진 클러스터의 최대 크기에 의해 제한된다. 실험 결과를 통해, 제안하는 방법이 기존의 대규모 베이지안 망 학습에 활용되었던 SC(Sparse Candidate) 방법 보다 훨씬 적은 수의 후보 DAG만을 고려하였음에도 불구하고, 비슷한 정도의 정확도를 나타냄을 보인다.

  • PDF

Automatic Construction of Hierarchical Bayesian Networks for Topic Inference of Conversational Agent (대화형 에이전트의 주제 추론을 위한 계층적 베이지안 네트워크의 자동 생성)

  • Lim, Sung-Soo;Cho, Sung-Bae
    • Journal of KIISE:Software and Applications
    • /
    • v.33 no.10
    • /
    • pp.877-885
    • /
    • 2006
  • Recently it is proposed that the Bayesian networks used as conversational agent for topic inference is useful but the Bayesian networks require much time to model, and the Bayesian networks also have to be modified when the scripts, the database for conversation, are added or modified and this hinders the scalability of the agent. This paper presents a method to improve the scalability of the agent by constructing the Bayesian network from scripts automatically. The proposed method is to model the structure of Bayesian networks hierarchically and to utilize Noisy-OR gate to form the conditional probability distribution table (CPT). Experimental results with ten subjects confirm the usefulness of the proposed method.

Bayesian Validation Method based on Fuzzy c-Means Algorithm for Analysis of Optimal Gene Clustering (최적의 유전자 클러스터 분석을 위한 퍼지 c-Means 알고리즘 기반의 베이지안 검증 방법)

  • 유시호;원홍희;조성배
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2003.10b
    • /
    • pp.736-738
    • /
    • 2003
  • 수천 개의 유전자 발현 정보를 가지고 있는 DNA 마이크로어레이 기술의 발달로 대량의 생물정보를 빠른 시간 내에 분석하는 것이 가능하게 되었다. 유전자를 분석하는 방법 중 하나인 클러스터링 방법은 비슷한 기능을 가진 유전자들을 집단화시켜서 집단내의 유전자들의 기능을 밝히거나, 미지의 유전자를 분석하는데 이용되고 있다. 본 논문에서는 유전자 데이터를 분석하기 위한 퍼지 클러스터링 방법과 이를 효과적으로 검증할 수 있는 베이지안 검증 방법을 제안한다. 퍼지 c-means 알고리즘을 사용하여 클러스터를 생성하고, 클러스터 결과를 기존의 퍼지 클러스터 검증 방법들과 본 논문에서 제안하는 베이지안 검증 방법을 사용하여 비교 평가한다. 베이지안 검증 방법은 각 유전자의 클러스터 멤버쉽을 확률로 이용하여 각 클러스터에 속할 확률을 계산하고, 이 값을 가장 크게 해주는 클러스터 집단을 선택한다. 이 방법은 기존의 퍼지 클러스터 검증 방법들과는 달리 클러스터 수에 무관한 평가가 가능한 장점을 가지고 있다. Serum과 Yeast 데이터에 대한 실험 결과, 베이지안 검증 방법의 유용성을 확인할 수 있었다.

  • PDF