머신러닝을 위한 베이지안 방법론: 군집분석을 중심으로

  • Published : 2016.09.30

Abstract

본고에서는 베이지안 기계학습 방법론에 대해서 간략히 살펴본다. 특히, 복잡한 자료들 사이의 관계를 규명하는 것이 목적이며 비지도학습(unsupervised learning)의 한 분야인 군집분석에서 베이지안 방법론들이 어떻게 사용되어지는지를 설명한다. 군집의 수를 사전에 아는 경우에 사용되는 모수적 베이지안 방법을 간단하게 설명하고, 군집의 수까지 추론 할 수 있는 비모수 베이지안방법에 대해서 자세하게 다룬다.

Keywords

References

  1. Gelfand, Alan E., and Adrian FM Smith. "Samplingbased approaches to calculating marginal densities." Journal of the American statistical association 85.410 (1990): 398-409. https://doi.org/10.1080/01621459.1990.10476213
  2. Ferguson, Thomas S. "A Bayesian analysis of some nonparametric problems." The annals of statistics (1973): 209-230.
  3. Sethuraman, Jayaram. "A constructive definition of Dirichlet priors." Statistica sinica (1994): 639-650.
  4. Escobar, Michael D., and Mike West. "Bayesian density estimation and inference using mixtures." Journal of the american statistical association 90.430 (1995): 577-588. https://doi.org/10.1080/01621459.1995.10476550
  5. Blei, David M., and Michael I. Jordan. "Variational inference for Dirichlet process mixtures." Bayesian analysis 1.1 (2006): 121-144. https://doi.org/10.1214/06-BA104
  6. Gorur, Dilan. "Nonparametric Bayesian Discrete Latent Variable Models for Unsupervised Learning." (2007).
  7. Xing, Eric P., Michael I. Jordan, and Roded Sharan. "Bayesian haplotype inference via the Dirichlet process." Journal of Computational Biology 14.3 (2007): 267-284. https://doi.org/10.1089/cmb.2006.0102
  8. Teh, Yee Whye, et al. "Hierarchical dirichlet processes." Journal of the american statistical association (2012).
  9. Blei, David M., Andrew Y. Ng, and Michael I. Jordan. "Latent dirichlet allocation." Journal of machine Learning research 3.Jan (2003): 993-1022.
  10. Sudderth, Erik B., et al. "Describing visual scenes using transformed objects and parts." International Journal of Computer Vision 77.1-3 (2008): 291-330. https://doi.org/10.1007/s11263-007-0069-5
  11. Pitman, Jim, and Marc Yor. "The two-parameter Poisson-Dirichlet distribution derived from a stable subordinator." The Annals of Probability (1997): 855-900.
  12. Williamson, Sinead, Avinava Dubey, and Eric P. Xing. "Parallel Markov Chain Monte Carlo for Nonparametric Mixture Models." ICML (1). 2013.
  13. Blei, David M., and John D. Lafferty. "Dynamic topic models." Proceedings of the 23rd international conference on Machine learning. ACM, 2006.