• Title/Summary/Keyword: 베이지안 모수추정

검색결과 70건 처리시간 0.02초

한국지역 집중호우에 대한 반환주기의 베이지안 모형 분석 (A Hierarchical Bayesian Modeling of Temporal Trends in Return Levels for Extreme Precipitations)

  • 김용구
    • 응용통계연구
    • /
    • 제28권2호
    • /
    • pp.137-149
    • /
    • 2015
  • 본 논문에서는 비정상 극치 강수 자료에 대해 계층적 베이지안 모형을 적용하여 시간에 따른 모수의 변화를 추정하며, 미래 확률 강수량에 대한 극단값 분포를 예측하고 더 나아가 반환기간에 대한 경향과 예측 값을 얻고자 한다. 이전의 고전적 통계 방법을 통한 강수 자료의 모수 추정연구의 경우, 자료의 정상성 가정 하에 고정된 모수를 추정하는 방법으로, 최근 나타난 비정상 강수 사상과 같이 강수량이 가지는 분포의 모수적 변화가 예상되는 경우 해석상 문제가 발생한다. 이러한 문제점을 해결하기 위해 모형의 관심모수에 시간에 따른 자기 상관 선형 회귀 함수를 적합한 계층적 베이지안 모형을 고려한다. 제안된 모형의 효율성을 확인하기 위해서 1973년부터 2011년까지 39년 동안의 우리나라 여러지역의 기상 관측소에서 관측된 일일 강우량 자료가 사용하여 대표적인 극단값 분포인 Generalized Extreme Value(GEV) 분포에 적합시키고, 계층적 베이지안 모형을 이용하여 이들 분포의 모수들에 자기상관 시간모형을 소개한 후 우리나라 여러지역에 대한 반환기간에 대한 시간에 따른 경향을 확인하였다.

일반화혼합회귀 추정량과 베이지안 회귀추정량의 비교

  • 김주성;김영권
    • Communications for Statistical Applications and Methods
    • /
    • 제3권3호
    • /
    • pp.1-9
    • /
    • 1996
  • 본 논문에서는 일반화 회귀모형의 회귀모수${\beta}$에 대한 사전정보의 형태에 따른 각 추정량들에 대하여 연구하였다. 먼저 사전정보가 ${\beta}$에 대한 사전분포로 주어지는 경우에 해당하는 베이지안 회귀추정량을 제시하였고, 다른 하나는 ${\beta}$에 대한 사전정보모형으로 선형회귀모형식이 주어진 경우의 일반화 혼합회귀추정량에 대하여 연구하였다. 두가지 경우로부터 얻어진 각 추정량의 정도를 알아보기 위하여 각 추정량의 공분산행렬을 이 용하여 서로 비교하여 보았다. 각 추정량의 분산비들을 이용하여 일반적으로 일반화 혼합회귀추정량이 베이지안 회귀추정량들보다 비교적 작은 분산값을 가진다는 결론을 얻었다.

  • PDF

베이지안 추정법에 의한 소자의 수명 예측에 관한 연구 (A Study on the Lifetime Prediction of Device by the Method of Bayesian Estimate)

  • 오종환;오영환
    • 한국통신학회논문지
    • /
    • 제19권8호
    • /
    • pp.1446-1452
    • /
    • 1994
  • 본 논문은 일반적으로 채택하고 있는 소자(device)의 수명분포인 와이블(Weibull) 분포를 적용하여 소자의 가속(accelerated) 수명 테스트에서 얻은 데이터, 즉 소자의 고정 시간을 이용하여 소자의 수명을 예측(prediction)하는데 필요한 보수(parameter)들을 추정 하는데 베이지안(Bayesian) 추정법을 이용하였다. 베이지안 추정법에서 모수를 추정하기 위해서는 사전정보가 있어야 하는데 본 논문에서는 사전정보 없이 현재의 정보만을 이용하여 모수를 추정하는 방법을 제안하였다. 스트레스가 온도인 경우, Arrhenius 모델을 적용하여 소자의 정상동작 상태에서의 수명을 예측 하는데 선형 추정을 하였다.

  • PDF

순서를 갖는 척도모수들의 사전정보 하에 k-모집단 와이블분포의 베이지안 모수추정 (Bayesian Estimation of k-Population Weibull Distribution Under Ordered Scale Parameters)

  • 손영숙;김성욱
    • 응용통계연구
    • /
    • 제16권2호
    • /
    • pp.273-282
    • /
    • 2003
  • 순서화된 척도모수들의 사전정보를 가지는 k-모집단 와이블분포의 모수추정을 위한 베이지안방법이 제시된다. 모수추정은 깁스샘플링에 의해서 이루어지며, 특히 깁스샘플러에서 형태모수의 조건부 사후분포는 로그-오목함수이므로 적응기각표집(Adaptive Rejection Sampling: ARS)방법에 의해 모수생성을 하였다. 논의된 모수추정법을 전기 절연유체 고장시간자료에 적용하여 척도모수의 순서화정보를 반영한 경우와 그렇지 않은 경우를 비교하였다.

베이지안 실험계획법의 이해와 응용 (Understanding Bayesian Experimental Design with Its Applications)

  • 이군희
    • 응용통계연구
    • /
    • 제27권6호
    • /
    • pp.1029-1038
    • /
    • 2014
  • 본 연구에서는 베이지안 실험계획법에 대하여 논의하고 간단한 모의실험을 통하여 최적화된 베이지안 실험계획법이 어떠한 특징을 가지고 있는지 설명하였다. 실험을 설계하는 경우 연구자는 관심있는 주제가 모수추정인지 아니면 예측인지를 결정하고 사전확률과 우도함수를 기반으로 이에 맞는 사후확률을 찾아 효용함수와 결합하여 최적의 실험설계를 찾는 것이 베이지안 실험계획법의 기본 원리이다. 만일 사전적 정보가 존재하지 않는다면 무정보적 부적합 사전확률을 이용하여 실험을 설계할 수 있으며, 이는 비 베이지안적 접근방법과 일치하게 된다. 만일 모수나 예측값에 대한 사전적 정보가 존재하는 경우에는 베이지안 실험계획법이 유일한 해결 방법이다. 하지만 모형의 복잡도가 증가하게 되면, 최적해를 찾는 과정이 매우 복잡해져서 극복해야 하는 많은 문제점들이 존재하므로 향후 많은 연구가 필요한 분야이다.

모수, 비모수, 베이지안 출산율 모형을 활용한 합계출산율 예측과 비교 (A comparison and prediction of total fertility rate using parametric, non-parametric, and Bayesian model)

  • 오진호
    • 응용통계연구
    • /
    • 제31권6호
    • /
    • pp.677-692
    • /
    • 2018
  • 최근 2017년 우리나라 합계출산율은 1.05명로 2005년 1.08명 수준으로 회귀하는 현상을 보이고 있다. 1.05명은 인구대체선(2.1명), 안전선(1.5명)과도 거리가 먼 초저출산 수준이고 마치 초저출산 덫에 빠질 우려가 있다. 이에 합계출산율의 합리적인 예측과 이를 통한 출산정책에 유용한 자료를 제공하는 것은 그 어느 때 보다도 중요하다. 그 동안 다양한 통계적 방법으로 합계출산율 추이를 예측하였는데, 데이터 완비성이 높고 품질이 좋은 경우 모형 접근인 모수적 방법, 데이터 추이가 단절되거나 변동이 심한 경우 평활과 가중치를 적용한 비모수적 방법, 데이터 부족과 품질 등으로 선진국의 출산율 3단계 전이현상을 참고하여 이들의 사전분포를 활용하는 베이지안 방법 등이 적용되어 왔다. 본 연구는 최근 변동이 심한 우리나라 출산율에 모수, 비모수, 그리고 베이지안 방법을 적용하여 추정과 예측을 실시하고 도출된 결과 비교를 통해 적합성과 타당성 측면에서 어떤 방법이 합리적인지 모색하고자 한다. 분석결과 합계출산율 예측값 순위는 통계청 합계출산율이 가장 높고, 베이지안, 모수, 비모수 순으로 나타났다. 2017년 TFR 1.05명 수준을 감안할 때 모수, 비모수모형으로 도출된 합계출산율 예측값이 합리적이다. 또한 출산율 자료완비성이 높고 품질이 우수할 경우 계산 효율성과 적합도 관점에서 모수적 추정과 예측 접근 방법이 타 방법보다 우수한 것으로 도출되었다.

비모수적 베이지안 추정량을 이용한 생존함수의 추정

  • 이인석;조길호;이우동
    • Journal of the Korean Data and Information Science Society
    • /
    • 제5권2호
    • /
    • pp.29-44
    • /
    • 1994
  • 본 연구는 누적위험률함수에 대한 베이지안 추정량을 이용하여 생존함수의 추정량을 제안하고, counting process 이론과 martingale 이론을 이용하여 대표본하에서 제안된 추정량의 일양적 일치성과 점근적 정규성을 밝힌다. 또한 모의실험을 통하여 추정량들의 효율성을 편의와 평균제곱오차의 측면에서 비교하고자 한다.

  • PDF

양쪽중단된 지수분포의 모수와 신뢰도에 대한 계층적 베이즈추정 (Hierarchical Bayes Estimation of Parameter and Reliability Function in Doubly Censored Exponential Distribution)

  • 조장식;강상길
    • 응용통계연구
    • /
    • 제12권2호
    • /
    • pp.405-414
    • /
    • 1999
  • 양쪽중단(doubly censored)된 지수분포에서 모수와 신뢰도함수를 계층적 베이지안(hierarchical Bayesian)방법을 이용하여 추정하였다. 베이즈 계산은 깁스표본기법(Gibbs sampler)을 이용하고 또한 완전조건부 분포(full conditional distribution)의 정량화 상수를 모르는 경우에는 적합기각방법(adaptive rejection sampling)을 이용하였다. 그리고 실제자료를 이용하여 분석을 하였다.

  • PDF

장기억 과정에서 빠른 베이지안 변화점검출 (A Fast Bayesian Detection of Change Points Long-Memory Processes)

  • 김주원;조신섭;여인권
    • 응용통계연구
    • /
    • 제22권4호
    • /
    • pp.735-744
    • /
    • 2009
  • 이 논문에서는 장기억 과정에서의 변화점을 빨리 검출하는 베이지안 추론방법에 대해 알아본다. 장기억 과정에서의 베이지안 추정은 장기억 모수값에 따라 전체 자료에 대한 부분차분을 계산해야 하기 때문에 수행시간이 많이 걸린다는 문제가 있다. 이 논문에서는 이러한 문제를 해결하고자 장기억 모수공간을 그룹화하여 순서형으로 범주화시킨 후 설명력이 가장 높은 범주의 대표값을 선택하게 하였다. 이 방법은 초기단계에서 범주의 대표값에 대해 한번씩만 부분차분을 계산하면 되기 때문에, 매번 계산해야 하는 추정하는 방법보다, 특히 시계열자료의 수가 많은 경우, 상대적으로 빠른 베인지안 추론이 가능하다. 또한 장기억 모수공간이 (0,0.5) 이기 때문에 모수공간을 적절하게 그룹화한다면 장기억 모수를 선택하는 것이 모수를 추정하는 것에 비해 큰 차이가 없다. 이 논문에서는 나일강 수위자료 실증분석을 통해 제안된 방법의 타당성을 확인해본다.

정규확률변수 관측치열에 대한 베이지안 변화점 분석 : 서울지역 겨울철 평균기온 자료에의 적용 (Bayesian Change Point Analysis for a Sequence of Normal Observations: Application to the Winter Average Temperature in Seoul)

  • 김경숙;손영숙
    • 응용통계연구
    • /
    • 제17권2호
    • /
    • pp.281-301
    • /
    • 2004
  • 본 논문에서는 일변량 정규분포를 따르는 확률변수의 관측치열에 대한 변화점 문제(change point problem)를 고찰한다. 변화점의 존재유무, 그리고 만일 변화점이 존재한다면 어떠한 유형으로 발생했는지 즉, 변화점 발생 이후로 평균만 변화, 분산만 변화, 또는 평균과 분산 모두가 변화했는지를 밝힌다. 가능한 여러 유형의 변화모형들 가운데 최적의 모형을 선택하기 위해 베이지안 모형선택 기법을 이용하고, 선택된 모형에 내재된 모수를 추정 하기 위해 메트로폴리스-혜스팅스 알고리 즘을 포함한 깁스샘플링 을 이용한다. 이러한 방법론은 모의실험을 통해 검토되고, 또한 서울지역의 겨울철 평균기온 자료에 적용된다.