• Title/Summary/Keyword: 벌칙기법

Search Result 41, Processing Time 0.023 seconds

Elasto-Plastic Contact Analysis for a Rigid Surface with an Arbitrary Shape in SPH (SPH에서 임의 형상의 강체면에 대한 탄소성 접촉 해석)

  • Seo, Song-Won;Lee, Jae-Hoon;Min, Oak-Key
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.450-455
    • /
    • 2004
  • There is few research about contact problem for a rigid surface with an arbitrary shape in SPH. The variational equation based on the virtual work principle is derived and its solution is obtained by the penalty method. It is proposed a new method that can determine the parameters for a penetration and a penetration rate used in the penalty method. The reproducing condition is adopted to correct the deficiency of kernel on the boundary. In order to calculate a penetration of particles, after checking boundary particles for deformable body boundary normal vectors were determined on the rigid surface. Numerical simulations for models which have rigid surface with an arbitrary shape were conducted to validate the proposed method in 2D. The results of those analysis represent that the contact algorithm proposed in this study works properly.

  • PDF

SPH Algorithm for an Elasto-Plastic Contact Analysis on a Rigid Surface with an Arbitrary Shape (임의 형상의 강체면 탄소성 접촉 해석을 위한 SPH 알고리듬)

  • Lee Jaehoon;Min Oakkey;Seo Songwon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.1 s.232
    • /
    • pp.30-37
    • /
    • 2005
  • There is few research about contact problem for a rigid surface with an arbitrary shape in SPH. The variational equation based on the virtual work principle is derived and its solution is obtained by the penalty method. It is proposed a new method that can determine the parameters for a penetration and a penetration rate used in the penalty method. The reproducing condition is adopted to correct the deficiency of kernel on the boundary. In order to calculate a penetration of particles, after checking boundary particles for deformable body, boundary normal vectors were determined on the rigid surface. Numerical simulations for models which have rigid surface with an arbitrary shape were conducted to validate the proposed method in 2D Cartesian and cylindrical coordinate. The results of those analysis represent that the contact algorithm proposed in this study works properly.

Smoothing Kaplan-Meier estimate using monotone support vector regression (단조 서포트벡터기계를 이용한 카플란-마이어 생존함수의 평활)

  • Hwang, Changha;Shim, Jooyong
    • Journal of the Korean Data and Information Science Society
    • /
    • v.23 no.6
    • /
    • pp.1045-1054
    • /
    • 2012
  • Support vector machine is known to be the very useful statistical method in classification and nonlinear function estimation. In this paper we propose a monotone support vector regression (SVR) for the estimation of monotonically decreasing function. The proposed monotone SVR is applied to smooth the Kaplan-Meier estimate of survival function. Experimental results are then presented which indicate the performance of the proposed monotone SVR using survival functions obtained by exponential distribution.

A Feasibility Study on the Application of the Topology Optimization Method for Structural Damage Identification (구조물의 결함 규명을 위한 위상최적설계 기법의 적용가능성 연구)

  • Lee, Joong-Seok;Kim, Jae-Eun;Kim, Yoon-Young
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.2 s.107
    • /
    • pp.115-123
    • /
    • 2006
  • A feasibility of using the topology optimization method for structural damage identification is investigated for the first time. The frequency response functions (FRFs) are assumed to be constructed by the finite element models of damaged and undamaged structures. In addition to commonly used resonances, antiresonances are employed as the damage identifying modal parameters. For the topology optimization formulation, the modal parameters of the undamaged structure are made to approach those of the damaged structure by means of the constraint equations, while the objective function is an explicit penalty function requiring clear black-and-white images. The developed formulation is especially suitable for damage identification problems dealing with many modal parameters. Although relatively simple numerical problems were considered in this investigation, the possibility of using the topology optimization method for structural damage identification is suggested through this research.

Member Design of Frame Structure Using Genetic Algorithm (유전자알고리즘에 의한 골조구조물의 부재설계)

  • Lee, Hong-Woo
    • Journal of Korean Association for Spatial Structures
    • /
    • v.4 no.4 s.14
    • /
    • pp.91-98
    • /
    • 2004
  • Genetic algorithm is one of the best ways to solve a discrete variable optimization problem. This method is an unconstrained optimization technique, so the constraints are handled in an implicit manner. The most popular way of handling constraints is to transform the original constrained problem into an unconstrained problem, using the concept of penalty function. I present the 3 fitness functions which represent the reject strategy, the penalty strategy, and the combined strategy. I make the design program using the 3 fitness Auctions and it is applied to the design problem of a gable frame and a 2 story 3 span frame.

  • PDF

Non-rigid Image Registration using Constrained Optimization (Constrained 최적화 기법을 이용한 Non-rigid 영상 등록)

  • Kim Jeong tae
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.10C
    • /
    • pp.1402-1413
    • /
    • 2004
  • In non-rigid image registration, the Jacobian determinant of the estimated deformation should be positive everywhere since physical deformations are always invertible. We propose a constrained optimization technique at ensures the positiveness of Jacobian determinant for cubic B-spline based deformation. We derived sufficient conditions for positive Jacobian determinant by bounding the differences of consecutive coefficients. The parameter set that satisfies the conditions is convex; it is the intersection of simple half spaces. We solve the optimization problem using a gradient projection method with Dykstra's cyclic projection algorithm. Analytical results, simulations and experimental results with inhale/exhale CT images with comparison to other methods are presented.

The Optimum Design for PSC Box Girder Bridges Considering Friction Coefficient and Material Strength (마찰계수와 재료강도를 고려한 PSC 박스 거더교의 최적설계)

  • Kim, Ki Wook
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.2
    • /
    • pp.181-189
    • /
    • 2006
  • This study analyzes the effects of the curvature friction coefficient, the wobble friction coefficient, and the increased strength of concrete, reinforced tendon on optimum de signs by using the optimum-design program, to minimize the cost of a PSC box girder bridge using the full staging method. The objective of this study is to find a proper tendon for the friction coefficient, and thereafter, to indicate the direction of the study development about tendons and to indicate the direction of a study on the increased strength of used materials. This program used the SUMT procedure and Kavlie's extended-penalty function to allow infeasible design points in the process. Powel's direct method was used in searching design points, and the gradient approximate method was used to reduce the design hours.

Efficiency Evaluation of Harmony Search Algorithm according to Constraint Handling Techniques : Application to Optimal Pipe Size Design Problem (제약조건 처리기법에 따른 하모니써치 알고리즘의 효율성 평가 : 관로 최소비용설계 문제의 적용)

  • Yoo, Do Guen;Lee, Ho Min;Lee, Eui Hoon;Kim, Joong Hoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.7
    • /
    • pp.4999-5008
    • /
    • 2015
  • The application of efficient constraint handling technique is fundamental method to find better solutions in engineering optimization problems with constraints. In this research four of constraint handling techniques are used with a meta-heuristic optimization method, harmony search algorithm, and the efficiency of algorithm is evaluated. The sample problem for evaluation of effectiveness is one of the typical discrete problems, optimal pipe size design problem of water distribution system. The result shows the suggested constraint handling technique derives better solutions than classical constraint handling technique with penalty function. Especially, the case of ${\varepsilon}$-constrained method derives solutions with efficiency and stability. This technique is meaningful method for improvement of harmony search algorithm without the need for development of new algorithm. In addition, the applicability of suggested method for large scale engineering optimization problems is verified with application of constraint handling technique to big size problem has over 400 of decision variables.

Robust Design Optimization for Reducing Cogging Torque of a BLDC Motor through an Enhanced Taguchi Method (개선된 다구찌 기법을 이용한 BLDC 전동기의 코깅 토크 저감을 위한 강건 최적설계)

  • Lee, Chang-Uk;Kim, Dong-Wook;Kim, Dong-Hun
    • Journal of the Korean Magnetics Society
    • /
    • v.24 no.5
    • /
    • pp.160-164
    • /
    • 2014
  • In this paper, an efficient robust design utilizing an enhanced Taguchi method is proposed to reduce cogging torque of a BLDC motor in the presence of design uncertainty. To overcome defects of the conventional Taguchi method in dealing with a generalized robust design problem, a penalty function and an optimal level searching technique are newly introduced. In order to verify the proposed method, a 5 kW, rated speed of 2,300 rpm, rated torque of 20 Nm BLDC motor for driving electric vehicles is optimized. Then, the robust design is compared with conceptual and deterministic ones in terms of the cogging torque, rated torque and torque ripple.

A Study on Improvement of Research Ethic System in University (대학 연구윤리체계의 발전방안 연구)

  • Ahn, Sang-Yoon
    • Journal of Digital Convergence
    • /
    • v.20 no.1
    • /
    • pp.203-211
    • /
    • 2022
  • This study is to examine the causes of research misconduct such as plagiarism, forgery, redundant publication, unfair author expression, and incapacitation of the research ethics system of university researchers and to suggest improvement plan. It basically relied on literature research. In order to supplement the deficiencies in literature research, I sought advice from an expert professor who had experience working in a research-related field in university or who is currently in a position related to research ethics through the delphi-method. As a result of the study, from the perspective of individual researchers, the complacent attitude, dishonesty, and greed for research funds were identified as the main reasons. In terms of organization, it was analyzed for reasons such as lack of detail and application of regulations, lack of verification system, and performance-oriented research environment. In order to overcome research misconduct caused by the researcher's personal reasons, regularization, increase in the number of research ethics education, and strengthening personal penalties were suggested. As a way to overcome irregularities arising from institutional reasons, the reinforcement of the verification system, the reinforcement of the whistle-blower's personal protection system, the omission of promotion, and the quality and quantitative balance of research evaluation was suggested.