• Title/Summary/Keyword: 벅

Search Result 238, Processing Time 0.027 seconds

Bidirectional Charging/Discharging Digital Control System for Eco-friendly Capacitor Energy Storage Device Implemented by TMS320F28335 chip (TMS320F28335로 구현한 친환경 커패시터 전력저장장치의 양방향 디지털 제어 충/방전 시스템)

  • Lee, Jung-Im;Lee, Jong-Hyun;Jung, An-Yoel;Lee, Choon-Ho;Park, Joung-Hu;Jeon, Hee-Jong
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.15 no.3
    • /
    • pp.188-198
    • /
    • 2010
  • Recently, as the demand of the environmental-friendly energy storage system such as an electric double-layer condenser increases, that of the bidirectional charger/discharger for the systems also increases. However, when charging/discharging mode-change occurs, the charger/discharger employing a bi-directional DC-DC converter with a commercialized analog controller has a complex circuit scheme, and a poor transient response. On the other hand, if a single digital controller is used for the bi-directional mode, the system performances can be improved by application of an advanced power-processing algorithm. In the paper, an environmental-friendly power storage systems including an Electric Double Layer Capacitor(EDLC) banks were developed with a bi-directional buck-boost converter and a digital signal processor (TMS320F28335). A simulation test-bed was realized and tested by MATLAB Simulink, and the hardware experiment was performed which shows that the dynamic response was improved such as the simulation results.

Synchronous Buck Converter with High Efficiency and Low Ripple Voltage for Mobile Applications (고 효율 저 리플 전압 특성을 갖는 모바일용 동기 형 벅 컨버터)

  • Yim, Chang-Jong;Kim, Jun-Sik;Park, Shi-Hong
    • Journal of IKEEE
    • /
    • v.15 no.4
    • /
    • pp.319-323
    • /
    • 2011
  • In this paper presents a new model of dual-mode synchronous buck converter with dynamic control for mobile applications was proposed. The proposed circuit can operate at 2.5MHz with supply voltage 2.5V to 5V for low ripple and minimum inductor and capacitor size, which is suitable for single-cell lithium-ion battery supply mobile applications. For high efficiency, the proposed circuit adopts synchronous type and dynamic control. The proposed circuit is designed by using the device parameter of TSMC 0.18um BCD process and the performance is evaluated by Cadence spectre. Experimental board level results show the maximum conversion efficiency is 96% at 100mA load current.

The Design of DC-DC Converter with Green-Power Switch and DT-CMOS Error Amplifier (Green-Power 스위치와 DT-CMOS Error Amplifier를 이용한 DC-DC Converter 설계)

  • Koo, Yong-Seo;Yang, Yil-Suk;Kwak, Jae-Chang
    • Journal of IKEEE
    • /
    • v.14 no.2
    • /
    • pp.90-97
    • /
    • 2010
  • The high efficiency power management IC(PMIC) with DTMOS(Dynamic Threshold voltage MOSFET) switching device and DTMOS Error Amplifier is presented in this paper. PMIC is controlled with PWM control method in order to have high power efficiency at high current level. Dynamic Threshold voltage CMOS(DT-CMOS) with low on-resistance is designed to decrease conduction loss. The control parts in Buck converter, that is, PWM control circuits consist of a saw-tooth generator, a band-gap reference circuit, an DT-CMOS error amplifier and a comparator circuit as a block. the proposed DT-CMOS Error Amplifier has 72dB DC gain and 83.5deg phase margin. also Error Amplifier that use DTMOS more than CMOS showed power consumption decrease of about 30%. DC-DC converter, based on Voltage-mode PWM control circuits and low on-resistance switching device is achieved the high efficiency near 96% at 100mA output current. And DC-DC converter is designed with Low Drop Out regulator(LDO regulator) in stand-by mode which fewer than 1mA for high efficiency.

A Triple-Mode DC-DC Buck Converter with DPSS Function (DPSS 기능을 갖는 3중 모드 DC-DC Buck 변환기)

  • Yu, Seong-Mok;Hang, In-Ho;Park, Jong-Tae;Yu, Chong-Gun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2011.10a
    • /
    • pp.411-414
    • /
    • 2011
  • This paper describes a tripple-mode DC-DC buck converter with DPSS Fucntion. The DC-DC buck converter operate in PWM(Pulse Width Modulation) mode at moderate to heavy loads(80mA~500mA), in PFM(Pulse Frequency Modulation)at light loads(1mA~80mA), and in LDO(Low Drop Out) mode at the sleep mode(<1mA). In PFM mode DPSS(Dynamic Partial Shutdown Strategy) is also employed to increase the efficiency at light loads. The triple-mode converter can thus achieve high efficiencies over wide load current range. The proposed DC-DC converter is designed in a CMOS 0.18um technology. It has a maximum power efficiency of 97.02% and maximum output current of 500mA. The input and output voltages are 3.3V and 2.5V, respectively. The chip size is $1465um{\times}895um$ including pads.

  • PDF

A zero-voltage zero-current switching power conversion system for fuel cell (영전압 영전류 스위칭을 이용한 연료전지용 전력변환시스템)

  • Son, Gyoung-Jong;Song, Sung-Geun;Moon, Chae-Joo;Kim, Kwang-Heon;Lim, Young-Cheol;Choi, Joon-Ho
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.11 no.4
    • /
    • pp.385-394
    • /
    • 2006
  • The application areas of traditional push-pull converters are limited because the voltage stress of switches is high (twice of the input voltage). But the push - pull converter topology is suitable for unregulated low-voltage to high-voltage power conversion such as the fuel cell. This paper presents a novel power converter structure that is very suitable for the DC/DC converter in fuel cell systems. Based on this structure, a ZVS- ZCS push-pull converter is proposed. The switches of the proposed push-pull converter can operate under ZVS or ZCS condition with the help of a new passive clamping circuit. The passive clamping techniques solves the voltage overshoot problem. Because the buck converter circuit operates at twice the synchronous switching frequency of the push-pull converter, the peak current in the current-fed inductor and transformer is reduced. The operation principle of the proposed converter is analyzed and verified by simulations and experimental results. A 1 kW DC/DC converter was implemented with DSP TMS320F2812, from which experimental results have shown that efficiency improvement and surge suppression can be achieved effectively.

Photovoltaic Generation by Parallel Driving of Modified Buck-boost Converter (변형된 승강압 컨버터의 병렬구동에 의한 태양광발전)

  • Lee Hee-Chang;Park Sung-Jun;Park Soo-Sik;Moon Chae-Joo;Lee Man-Hyung;Kim Jong-Dal
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.9 no.5
    • /
    • pp.457-466
    • /
    • 2004
  • In this paper, a modified converter is presented and analyzed to use as a photovoltaic converter. And also a new parallel driving scheme is proposed to increase output power and to reduce the output voltage ripple. The ratio of the output to the input voltage of the modified converter is equal to that of the boost converter. The difference between both converters is the composition of output terminal. Owing to the discrepancy, a working voltage of the output capacitor of the modified converter becomes lower, thus the capacitance value of the capacitor can be smaller than that of the boost converter. The proposed parallel driving is based on the modified converter and a current-mode-control method. It gives a good solution for alleviating the current sharing unbalance problem of conventional parallel operations. It reduces the output voltage ripple by means of increasing the equivalent switching frequency without additional switching losses. The validity of the proposed parallel driving strategy is verified through computer-aided simulations and experimental results.

Novel ZVS Switching Method of Full-bridge Converter (Full-bridge Converter의 새로운 ZVS 스위칭 기법)

  • Kim, Seung-Ryong;Sun, Han-Geol;Han, Man-Seung;Park, Sung-Jun
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.16 no.5
    • /
    • pp.477-483
    • /
    • 2011
  • Existing switching system that is one of the ways which are used for DC/DC power converter is classified to hard-switching system and resonant-soft-switching system, generally. Hard-switching system is inefficient because the power loss of the switching element is large when it is been to trun on or turn off. And resonant-soft-switching system have the defect that need to add the another reactor and capacitor that make it expensive and huge. This paper suggest the ZVS Full-Bridge power converter contrcution of novel switching system for the overcoming these shortcomings. In Suggested soft-switching system, the front of buck converter at diode current, switch is changing on and off at the part of full-bridge converter's zero voltage part. as the result that is possible to be ZVS excepting the reactor and capacitor. also to verify the reasonability of the isolated ZVS full-bridge DC/DC converter as previously suggested, we produced the 500[W] level DC/DC converter and enforced the simulation for Psim, and then it able to conform the superiority of the DC/DC converter's efficient.

A Single-Phase Quasi Z-Source AC-AC Converter with a Series Connection of the Output Terminals (출력이 직렬 결합된 단상 Quasi Z-소스 AC-AC 컨버터)

  • Oum, Jun-Hyun;Jung, Young-Gook;Lim, Young-Cheol;Choi, Joon-Ho
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.16 no.5
    • /
    • pp.415-429
    • /
    • 2011
  • In this study, a single-phase quasi Z-source AC-AC converters with a series connection of the output terminals is proposed. The proposed system has configuration that the input terminals of two quasi Z-source AC-AC converters are connected in parallel and its output terminals are connected in series. The out of phase mode and in phase mode of the proposed system are presented. To verify the validity of the proposed converter, a DSP controlled hardware was made and PSIM simulation was executed. As a result, controlling the duty ratio of the converter, the desired buck-boost output voltages could be generated. For each modes, as compared with the single converter operation, the proposed converter could enhance the efficiency and input power factor according to different loads. Also, in case of the out of phase mode under the constant load, the efficiency and input power factor of the proposed system are increased 10[%], 35[%] respectively in compared with the single converter. And, the output voltage is constantly controlled in dynamic state in case while the load is suddenly changed.

A Study on High Efficiency OBC with Wide Range Output Using Isolated Current-Fed PFC Converter (절연형 전류원 PFC 컨버터를 사용한 넓은 출력범위를 가지는 고효율 OBC에 대한 연구)

  • Kim, Hyung-Sik;Kim, Hee-Jun;Ahn, Joon-Seon
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.12 no.1
    • /
    • pp.99-105
    • /
    • 2019
  • OBC for battery charging of electric vehicles mainly consist of two stages including PFC circuit and isolated DC-DC converter circuit. In general, a non-isolated boost converter is used as the PFC circuit, and a resonant converter capable of ZVS (zero voltage switching) is used as the isolated DC-DC converter. In this paper, we propose an OBC composed of isolated current-fed type PFC circuit and buck DC-DC converter. The proposed OBC is easy to configure the circuit and controller, and can cope with a wide output range. In order to verify the validity of the proposed circuit, a prototype 3.3 ㎾ class prototype was fabricated. As a result, the maximum efficiency and the maximum power factor of 99.2% were confirmed under the operational stability and rated load conditions at the output voltage of 150V ~ 400V.

An Empirical Analysis on the Success Factors of Crowdfunding: Focusing on the Movie Category Project (크라우드펀딩 성공요인 실증분석: 영화 분야 프로젝트를 중심으로)

  • Lee, Do-Yeon;Chang, Byeng-Hee
    • The Journal of the Korea Contents Association
    • /
    • v.20 no.12
    • /
    • pp.13-22
    • /
    • 2020
  • This study aims to find out success factors of crowdfunding on movie projects. For empirical analysis, we collected 583 data of the movie projects from the crowdfunding platform 'Tumblbug'. To figure out the success factors, we examined effects of 10 independent variables on 1 dependent variable. The independent variable includes target amount, project information, reward options, creator funding power, editor recommendation, creator contents power, movie type, number of comments, number of replies, and number of SNS information. The final achievement rate of crowdfunding was set as dependent variable. This study found that the target amount, number of text information, number of video information, editor recommendation, number of backers' reply, and number of SNS information had a significant impact on the achievement rate of the movie crowdfunding project. This study has implications in that it has discovered a variable of editor recommendation and the number of SNS information, and both of them have a positive effect on crowdfunding achievement.