• Title/Summary/Keyword: 배열 승산기

Search Result 17, Processing Time 0.03 seconds

A Design of Cellular Array Parallel Multiplier on Finite Fields GF(2m) (유한체 GF(2m)상의 셀 배열 병렬 승산기의 설계)

  • Seong, Hyeon-Kyeong
    • The KIPS Transactions:PartA
    • /
    • v.11A no.1
    • /
    • pp.1-10
    • /
    • 2004
  • A cellular array parallel multiplier with parallel-inputs and parallel-outputs for performing the multiplication of two polynomials in the finite fields GF$(2^m)$ is presented in this paper. The presented cellular way parallel multiplier consists of three operation parts: the multiplicative operation part (MULOP), the irreducible polynomial operation part (IPOP), and the modular operation part (MODOP). The MULOP and the MODOP are composed if the basic cells which are designed with AND Bates and XOR Bates. The IPOP is constructed by XOR gates and D flip-flops. This multiplier is simulated by clock period l${\mu}\textrm{s}$ using PSpice. The proposed multiplier is designed by 24 AND gates, 32 XOR gates and 4 D flip-flops when degree m is 4. In case of using AOP irreducible polynomial, this multiplier requires 24 AND gates and XOR fates respectively. and not use D flip-flop. The operating time of MULOP in the presented multiplier requires one unit time(clock time), and the operating time of MODOP using IPOP requires m unit times(clock times). Therefore total operating time is m+1 unit times(clock times). The cellular array parallel multiplier is simple and regular for the wire routing and have the properties of concurrency and modularity. Also, it is expansible for the multiplication of two polynomials in the finite fields with very large m.

Implementation and Performance Analysis of the Pipelined Baugh-Wooley Multiplier (파이프라인 방식 Baugh-Wooley 승산기의 구현과 성능 분석)

  • 한강룡;최정필;송호정;황인재;송기용
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2001.10c
    • /
    • pp.46-48
    • /
    • 2001
  • 본 논문에서는 Baugh-Wooley 승산 알고리즘을 '8x8-bit 15 stage 파이프라인 배열 숭산기', '8x8-bit 2 stage 파이프라인 배열 숭산기', '순수 조합 논리 배열 승산기'의 방식으로 FPGA상에서 구현하였으며, 각 구현방식의 성능을 비교 분석하였다.

  • PDF

A Construction of Cellular Array Multiplier Over GF($2^m$) (GF($2^m$)상의 셀배열 승산기의 구성)

  • Seong, Hyeon-Kyeong;Kim, Heung-Soo
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.26 no.4
    • /
    • pp.81-87
    • /
    • 1989
  • A cellular array multiplier for performing the multiplication of two elements in the finite field GF($2^m$) is presented in this paper. This multiplier is consisted of three operation part ; the multiplicative operation part, the modular operation part, and the primitive irreducible polynomial operation part. The multiplicative operation part and the modular operation part are composed by the basic cellular arrays designed AND gate and XOR gate. The primitive iirreducible operation part is constructed by XOR gates, D flip-flop circuits and a inverter. The multiplier presented here, is simple and regular for the wire routing and possesses the properties of concurrency and modularity. Also, it is expansible for the multiplication of two elements in the finite field increasing the degree m and suitable for VLSI implementation.

  • PDF

Design of a Parallel Multiplier for Irreducible Polynomials with All Non-zero Coefficients over GF($p^m$) (GF($p^m$)상에서 모든 항의 계수가 0이 아닌 기약다항식에 대한 병렬 승산기의 설계)

  • Park, Seung-Yong;Hwang, Jong-Hak;Kim, Heung-Soo
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.39 no.4
    • /
    • pp.36-42
    • /
    • 2002
  • In this paper, we proposed a multiplicative algorithm for two polynomials with all non-zero coefficients over finite field GF($P^m$). Using the proposed multiplicative algorithm, we constructed the multiplier of modular architecture with parallel in-output. The proposed multiplier is composed of $(m+1)^2$ identical cells, each cell consists of one mod(p) additional gate and one mod(p) multiplicative gate. Proposed multiplier need one mod(p) multiplicative gate delay time and m mod(p) additional gate delay time not clock. Also, our architecture is regular and possesses the property of modularity, therefore well-suited for VLSI implementation.

Design of High-Speed Parallel Multiplier with All Coefficients 1's of Primitive Polynomial over Finite Fields GF(2m) (유한체 GF(2m)상의 기약다항식의 모든 계수가 1을 갖는 고속 병렬 승산기의 설계)

  • Seong, Hyeon-Kyeong
    • Journal of the Korea Society of Computer and Information
    • /
    • v.18 no.2
    • /
    • pp.9-17
    • /
    • 2013
  • In this paper, we propose a new multiplication algorithm for two polynomials using primitive polynomial with all 1 of coefficient on finite fields GF($2^m$), and design the multiplier with high-speed parallel input-output module structure using the presented multiplication algorithm. The proposed multiplier is designed $m^2$ same basic cells that have a 2-input XOR gate and a 2-input AND gate. Since the basic cell have no a latch circuit, the multiplicative circuit is very simple and is short the delay time $D_A+D_X$ per cell unit. The proposed multiplier is easy to extend the circuit with large m having regularity and modularity by cell array, and is suitable to the implementation of VLSI circuit.

Cell array multiplier in GF(p$^{m}$ ) using Current mode CMOS (전류모드 CMOS를 이용한 GF(P$^{m}$ )상의 셀 배열 승산기)

  • 최재석
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.2 no.3
    • /
    • pp.102-109
    • /
    • 2001
  • In this paper, a new multiplication algorithm which describes the methods of constructing a multiplierover GF(p$^{m}$ ) was presented. For the multiplication of two elements in the finite field, the multiplication formula was derived. Multiplier structures which can be constructed by this formula were considered as well. For example, both GF(3) multiplication module and GF(3) addition module were realized by current-mode CMOS technology. By using these operation modules the basic cell used in GF(3$^{m}$ ) multiplier was realized and verified by SPICE simulation tool. Proposed multipliers consisted of regular interconnection of simple cells use regular cellular arrays. So they are simply expansible for the multiplication of two elements in the finite field increasing the degree m.

  • PDF

A Design of an Adder and a Multiplier on $GF(2^2)$ Using T-gate (T-gate를 이용한 $GF(2^2)$상의 가산기 및 승산기 설계)

  • Yoon, Byoung-Hee;Choi, Young-Hee;Kim, Heung-Soo
    • Journal of IKEEE
    • /
    • v.7 no.1 s.12
    • /
    • pp.56-62
    • /
    • 2003
  • In this paper, we designed a adder and a multiplier using current mode T-gate on $GF(2^2)$. The T-gate is consisted of current mirror and pass transistor, the designed 4-valued T-gate used adder and multiplier on $GF(2^2)$. We designed its under 1.5um CMOS standard technology. The unit current of the circuits is 15㎂, and power supply is 3.3V VDD. The proposed current mode CMOS operator have a advantage of module by T-gate`s arrangement, and so we easily implement multi-valued operator.

  • PDF

(Multiplexer-Based Away Multipliers over $GF(2^m))$ (멀티플렉서를 이용한 $GF(2^m)$상의 승산기)

  • Hwang, Jong-Hak;Park, Seung-Yong;Sin, Bu-Sik;Kim, Heung-Su
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.37 no.4
    • /
    • pp.35-41
    • /
    • 2000
  • In this paper, the multiplicative algorithm of two polynomals over finite field GF(2$^{m}$ ) is presented. The proposed algorithm permits an efficient realization of the parallel multiplication using iterative arrays. At the same time, it permits high-speed operation. This multiplier is consisted of three operation unit: multiplicative operation unit, the modular operation unit, the primitive irreducible operation unit. The multiplicative operation unit is composed of AND gate, X-OR gate and multiplexer. The modular operation unit is constructed by AND gate, X-OR gate. Also, an efficient pipeline form of the proposed multiplication scheme is introduced. All multipliers obtained have low circuit complexity permitting high-speed operation and interconnection of the cells are regular, well-suited for VLSI realization.

  • PDF

Construction of High-Speed Parallel Multiplier on Finite Fields GF(3m) (유한체 GF(3m)상의 고속 병렬 승산기의 구성)

  • Choi, Yong-Seok;Park, Seung-Yong;Seong, Hyeon-Kyeong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.3
    • /
    • pp.510-520
    • /
    • 2011
  • In this paper, we propose a new multiplication algorithm for primitive polynomial with all 1 of coefficient in case that m is odd and even on finite fields $GF(3^m)$, and compose the multiplier with parallel input-output module structure using the presented multiplication algorithm. The proposed multiplier is designed $(m+1)^2$ same basic cells that have a mod(3) addition gate and a mod(3) multiplication gate. Since the basic cells have no a latch circuit, the multiplicative circuit is very simple and is short the delay time $T_A+T_X$ per cell unit. The proposed multiplier is easy to extend the circuit with large m having regularity and modularity by cell array, and is suitable to the implementation of VLSI circuit.