• Title/Summary/Keyword: 발효속도

Search Result 437, Processing Time 0.032 seconds

Cellular Responses to Alcohol in Escherichia coli, Clostridium acetobutylicum, and Saccharomyces cerevisiae (알코올에 대한 Escherichia coli, Clostridium acetobutylicum, Saccharomyces cerevisiae의 반응)

  • Park, Ju-Yong;Hong, Chun-Sang;Han, Ji-Hye;Kang, Hyun-Woo;Chung, Bong-Woo;Choi, Gi-Wook;Min, Ji-Ho
    • Korean Chemical Engineering Research
    • /
    • v.49 no.1
    • /
    • pp.105-108
    • /
    • 2011
  • The increased concern for the security of the oil supply and the negative impact of fossil fuels on the environment, particularly greenhouse gas emissions, has put pressure on society to find renewable fuel alternatives. Compared to the traditional biofuel, ethanol, higher alcohols offer advantage as gasoline substitutes because of their higher energy density and lower hygroscopicity. For this reason, microbial fermentation is known as potential producers for sustainable energy carriers. In this study, bacterial responses including cellular and molecular toxicity were studied in three different microorganisms, such as Escherichia coli, Clostridium acetobutylicum, and Saccharomyces cerevisiae. In this study, it was analyzed specific stress responses caused by ethanol and buthanol using four different stress responsive genes, i.e. fabA, grpE, katG and recA. The expression levels of these genes were quantified by semi-quantitative reverse transcription-PCR. It was found that four genes have shown different responsive patterns when E. coli cultures were under stressful conditions caused by ethanol and buthanol, respectively. Therefore, in this study, the stress responsive effects caused by these alcohols and the extent of each stress response can be analyzed using the expression levels and patterns of different stress responsive genes.

Effect of Some Materials on the Content of Nitrate, Nitrite and Vitamin C in Kimchi during Fermentation (배추김치 숙성(熟成) 중(中) 일부(一部) 첨가재료(添加材料)가 질산염(窒酸鹽), 아질산염(亞窒酸鹽) 및 Vitamin C 함량(含量)에 미치는 영향(影響))

  • Lee, Seon-Wha;Woo, Soon-Ja
    • Journal of the Korean Society of Food Culture
    • /
    • v.4 no.2
    • /
    • pp.161-166
    • /
    • 1989
  • This study was intended to observe the changes of the nitrate, nitrite and vitamin C content during the fermentation of Kimchies by some added materials. Eight different types of Kimchi, were prepared with chinese cabbage and seasonings, to which added respectively materials such as soused anchovy, soused shrimp, garlic, mustard leaf, K-sorbate, ascorbic acid, radish. After they were prefermented at $18^{\circ}C$ for 24 hours, stored 35 days at $4^{\circ}C$. Generally optimal maturity of Kimchi showed pH 4.4 to 4.6, lactic acid content 0.3 to 0.4% at salt content belows 2.5%. The content of total vitamin C in Kimchies was approximately 19.8-24.7 mg/100g at the initial stage of fermentation and then slightly decreased. When the process of the fermentation was active, the content of total vitamin C increased up to the same level or higher than that of the initial stage and then gradually decreased. In the case of Kimchi which added garlic, the content of vitamin C was relatively higher then the other samples. In the initial stage of fermentation, the nitrate and nitrite content in the Kimchi which added garlic and raddish were relatively higher than other samples. Nitrate content reached its minimum by the 21st day, at that time content was 290-342 ppm. At this time, the nitrite was not detected and total vitamin C content in all samples decreased.

  • PDF

Characterization of Bacillus licheniformis KJ-9 Isolated from Soil (토양으로부터 분리한 Bacillus licheniformis KJ 9의 특성)

  • Seo, Dong-Cheol;Ko, Jeong-Ae;Gal, Sang-Won;Lee, Sang-Won
    • Journal of Life Science
    • /
    • v.20 no.3
    • /
    • pp.403-410
    • /
    • 2010
  • In order to produce high-quality fermenting composts, a microorganism was isolated from the natural world. The bacterium has not only in high enzyme activities but also had good antimicrobial activities against phytopathogenic microorganisms. Its cultivating characteristics were then investigated. Bacterium KJ-9, which contains high CMCase, protease and chitinase activities and excellent antimicrobial activities against phytopathogenic microorganisms, was separated from leaf mold and identified as Bacillus licheniformis by two methods: Bergey's Manual of Systematic Bacteriology and API 50 CHL Carbohydrate Test Kit (Bio Merieux, France) using an ATB (Automated Identification) computer system (Bio Merieux, France). Optimal medium for cultivation of B. licheniformis was 2% soluble starch as a carbon source, 0.5% yeast extract as a nitrogen source and 0.05% $MgSO_4{\cdot}7H_2O$. Optimal growth conditions of pH, temperature and shake speed were pH 7.0, $50^{\circ}C$ and 180 rpm, respectively. Culture broth of B. licheniformis KJ-9 cultured for 36~60 hr was effective in fungicidal activities against plant pathogens including Botrytis cinerea, Corynespora cassicola, Fusarium oxysporum, and Rhizoctonia solani.

Production of Single Cell Protein on Petroleum Hydrocarbon -IV. On the Continuous Fermentation and Some Cultivation Conditions for Candida tropicalis KIST 351- (석유탄화수소를 이용한 단세포단백질의 생산에 관한 연구 -IV. Candida tropicalis KIST 351의 연속배양 및 몇가지 조건에 관하여-)

  • Lee, Yong-Hyun;Pyun, Yoo-Ryang;Kwon, Tai-Wan
    • Korean Journal of Food Science and Technology
    • /
    • v.4 no.3
    • /
    • pp.200-205
    • /
    • 1972
  • Effects of several different petroleum fractions (LGO, HGO, VGO, Diesel oil, SP(E), HGO-wax, L/M-wax), stepwise addition of calculated amounts of HGO at defined intervals, recycling of spent media on cell growth of Candida tropicalis KIST 351 were studied using $2.5{\ell}$ fermenter by batch process. In addition, continuous cultivation of the yeast was also performed in the light of biomass production using $28{\ell}$ fermenter with LGO. 1) Cell concentration, yield on the basis of gas oil and n-paraffin with the petroleum fractions were in the range of $11{\sim}15g/{\ell}$, $10{\sim}12%$ and $77{\sim}82%$, respectively. 2) By stepwise addition of the gas oil, cell concentration and yield on the oil were increased up to 18.9 g/land 13%, respectively. 3) Spent medium slowed emulsifying ability of hydrocarbon and stimulating effect on the cell growth. Without additional supplementation of $Mg^{++}$ up to 20% of spent medium could be reused, while by adding of the $Mg^{++}$, 50% of medium could be recycled. 4) Optimum condition of continuous cultivation for biomass production was attained at the dilution rate of $D=0.1{\sim}0.125\;hr^{-1}$. Maximum yield coefficient on consumed n-paraffin was 0.94 at $D=0.1\;hr^{-1}$, however, 24% of supplied n-paraffin in the media was not utilized at this dilution rate.

  • PDF

Immobilization of Bacillus sp. Strains, Catalase Producing Bacteria and Their Hydrogen Peroxide Removal Characteristics (카탈라제를 생산하는 고초균 (Bacillus sp.)의 고정화 및 과산화수소 분해 특성)

  • Han, Kyung-Ah;Jang, Yun-Hee;Rhee, Jong-Il
    • KSBB Journal
    • /
    • v.25 no.6
    • /
    • pp.520-526
    • /
    • 2010
  • In this work we have investigated the production of catalase from Bacillus sp. strains, which were screened and identified from soil. These strains were cultivated in shaking flasks with tryptic soy broth (TSB) at $30^{\circ}C$ and 200 rpm. Effects of the temperature and pH on the stability of the native catalase and whole cell viability were studied in the temperature range of $25-60^{\circ}C$ and the pH range of 7-13. Korean natural zeolite was added to culture medium and mixed with microorganisms for 24 hours. The native catalase maintained its activity over $50^{\circ}C$. The enzyme acitiviy of the catalase from Bacillus flexus BKBChE-3 was highest among the Bacillus sp. strains studied. Bacillus flexus BKBChE-3 and immobilized Bacillus cells have survived under extreme conditions of over $50^{\circ}C$ and pH 12. 60 mL of 10.5 mM $H_2O_2$ solution were entirely removed within 1 hour with catalase produced from Bacillus sp. on the flask. When Bacillus cells were immobilized on Korean natural zeolite, colony forming unit of Bacillus flexus BKBChE-3 was increased and high efficiency of hydrogen peroxide removal was observed.

Evaluation of Optimal Condition for Recombinant Bacterial Ghost Vaccine Production with Four Different Antigens of Streptococcus iniae-enolase, GAPDH, sagA, piaA (연쇄구균증 항원-enolase, GAPDH, sagA, piaA에 대한 재조합 고스트 박테리아 백신의 생산 최적화)

  • Ra, Chae-Hun;Kim, Yeong-Jin;Son, Chang-Woo;Jung, Dae-Young;Kim, Sung-Koo
    • Journal of Life Science
    • /
    • v.19 no.7
    • /
    • pp.845-851
    • /
    • 2009
  • A vector harboring double cassettes; a heterologous gene expression cassette of pHCE-InaN-antigen and a ghost formation cassette of pAPR-cI-E lysis 37 SDM was constructed and introduced to E. coli DH5a. For the production of a bacterial ghost vaccine, bacterial ghosts from E. coli / Streptococcus iniae with four different types of antigens - enolase, GAPDH, sagA and piaA - were produced by the optimization of fermentation parameters such as a glucose concentration of 1 g/l, agitation of 300 rpm and aeration of 1 vvm. Efficiency of ghost bacteria formation was evaluated with cultures of OD$_{600}$=1.0, 2.0 and 3.0. The efficiency of the ghost bacteria formation was 99.54, 99.67, 99.99 and 99.99% with inductions at OD$_{600}$=3.0, 1.0, 2.0 and 1.0 for E. coli/S. iniae antigens enolase, piaA, GAPDH and sagA, respectively. Ghost bacteria as a vaccine was harvested by centrifugation. The antigen protein expressions were analyzed by SDS-PAGE and western blot analysis, and the molecular weights of the enolase, piaA, GAPDH and sagA were 78, 26, 67 and 26 kDa, respectively. The molecular weights of the expressed antigens were consistent with theoretical sizes obtained from the amino acid sequences.

Inactivation of Lactobacillus plantarum by High Voltage Pulsed Electric Fields Treatment (고전압 펄스 전기장 처리에 의한 Lactobacillus plantarum의 불활성화)

  • Shin, Hae-Hun;Pyun, Yu-Ryang
    • Korean Journal of Food Science and Technology
    • /
    • v.29 no.6
    • /
    • pp.1175-1183
    • /
    • 1997
  • Lethal effects of high voltage pulsed electric fields (PEF) on suspensions of Lactobacillus plantarum cells in phosphate buffer solution were examined by using continuous recycle treatment system. Critical electric field strength and treatment time needed for inactivation of L. plantarum were 13.6 kV/cm and $16.1\;{\mu}s$ at room temperature, respectively. As decrease in frequency (decreasing pulse number), the degree of inactivation of L. plantarum was increased. A 2.5 log reduction in microbial population could be achieved with an electric field strength of 80 kV/cm, 300 Hz frequency and $2000\;{\mu}s$ treatment time. Survivability was decreased with increase in total treatment time (cycle number) and frequency at the same cycle number. As sterilization model of continuous recycle PEF treatment, $logS=-N_m\;log\;m+B$ and $N_m=k_1\;P_n+k_2$ were established. This model was very well fitted to tile empirical data. The rate of inactivation increased with increase in the processing temperature. The maximum reduction in survivability (5.6 log reduction) was obtained with 80 kV/cm electric field strength at $50^{\circ}C$ for $1000\;{\mu}s$ treatment.

  • PDF

Production of Single-Cell Protein on Petroleum Hydrocarbon Part 7. Growth Conditions of Mixed Cultures in Pilot Plant (석유탄화수소를 이용한 단세포단백질의 생산에 관한 연구 제 7 보 시험공장에서 혼합배양균주의 생육조건)

  • Pyun, Yu-Ryang;Mheen, Tae-Ick;Kwon, Tai-Wan
    • Korean Journal of Food Science and Technology
    • /
    • v.6 no.4
    • /
    • pp.231-240
    • /
    • 1974
  • The growth of a mixed yeast culture consisting of Canda tropicalis var. KIST 76 and Tricosporon cutaneum KIST 76-H was compared with that of pure cultures under pilot plant conditions. The mixed culture was judged stable based on the nearly constant ratio of the two organisms at the completion of fermentation. We obtained higher cell yields, protein content and productivity in the mixed culture on n-paraffin than the pure culture of C. tropicalis var. KIST 76. T. cutaneum KIST 76-H did not grow on n-paraffin medium. With the batch cultivation of mixed organisms on n-paraffin, the specific growth rates during the exponential growth phase were 0.24-0.33 $hr^{-1};$ cell yields were 96-106% and productivities were 2.9-3.6g/l. hr. The cells obtained contained 55-58% crude protein and 5.5-6.3% lipid. The critical value of dissolved oxygen concentration Ccrit. and saturation constant, km, are approximately 1.5 ppm and 0.228 ppm respectively. Also we established the optimal conditions for the mixed culture in batch fermentation.

  • PDF

Gold Recovery from Cyanide Solution through Biosorption, Desorption and Incineration with Waste Biomass of Corynebacterium glutamicum as Biosorbent (생체흡착, 탈착 및 회화를 이용한 시안 용액으로부터 금의 회수)

  • Bae, Min-A;Kwak, In-Seob;Won, Sung-Wook;Yun, Yeoung-Sang
    • Clean Technology
    • /
    • v.16 no.2
    • /
    • pp.117-123
    • /
    • 2010
  • In this study, we propose two methods able to recover different type of gold from gold-cyanide solutions: biosorption and desorption process for mono-valent gold recovery and biosorption and incineration process for zero-valent gold recovery. The waste bacterial biomass of Corynebacterium glutamicum generated from amino acid fermentation industry was used as a biosorbent. The pH edge experiments indicated that the optimal pH range was pH 2 - 3. From isothermal experiment and its fitting with Langmuir equation, the maximum uptake capacity of Au(I) at pH 2.5 were determined to be 35.15 mg/g. Kinetic tests evidenced that the process is very fast so that biosorption equilibrium was completed within the 60 min. To recover Au(I), the gold ions were able to be successfully eluted from the Au-loaded biosorbent by changing the pH to pH 7 and the desorption efficiency was 91%. This indicates that the combined process of biosorption and desorption would be effective for the recovery of Au(I). In order to recover zero-valent gold, the Au-loaded biosorbents were incinerated. The content of zero-valent gold in the incineration ash was as high as 85%. Therefore, we claim on the basis of the results that two suggested combined processes could be useful to recover gold from cyanide solutions and chosen according to the type of gold to be recovered.

Counting Harmful Aquatic Organisms in Ballast Water through Image Processing (이미지처리를 통한 선박평형수 내 유해수중생물 개체수 측정)

  • Ha, Ji-Hun;Im, Hyo-Hyuk;Kim, Yong-Hyuk
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.6 no.3
    • /
    • pp.383-391
    • /
    • 2016
  • Ballast water provides stability and manoeuvrability to a ship. Foreign harmful aquatic organisms, which were transferred by ballast water, cause disturbing ecosystem. In order to minimize transference of foreign harmful aquatic organisms, IMO(International Maritime Organization) adopted the International Convention for the Control and Management of Ship's Ballast Water and Sediments in 2004. If the convention take effect, a port authority might need to check that ballast water is properly disposed of. In this paper, we propose a method of counting harmful aquatic organisms in ballast water thorough image processing. We extracted three samples from the ballast water that had been collected at Busan port in Korea. Then we made three grey-scale images from each sample as experimental data. We made a comparison between the proposed method and CellProfiler which is a well known cell-counting program based on image processing. Setting of CellProfiler is empirically chosen from the result of cell count by an expert. After finding a proper threshold for each image at which the result is similar to that of CellProfiler, we used the average value as the final threshold. Our experimental results showed that the proposed method is simple but about ten times faster than CellProfiler without loss of the output quality.