DOI QR코드

DOI QR Code

Characterization of Bacillus licheniformis KJ-9 Isolated from Soil

토양으로부터 분리한 Bacillus licheniformis KJ 9의 특성

  • Seo, Dong-Cheol (Institute of Agriculture and Life Sciences, Gyeongsang National University) ;
  • Ko, Jeong-Ae (Dept. of Microbiological Engineering, Jinju National University) ;
  • Gal, Sang-Won (Dept. of Microbiological Engineering, Jinju National University) ;
  • Lee, Sang-Won (Dept. of Microbiological Engineering, Jinju National University)
  • 서동철 (경상대학교 농업생명과학원) ;
  • 고정애 (진주산업대학교 미생물공학과) ;
  • 갈상완 (진주산업대학교 미생물공학과) ;
  • 이상원 (진주산업대학교 미생물공학과)
  • Received : 2009.12.15
  • Accepted : 2009.12.18
  • Published : 2010.03.30

Abstract

In order to produce high-quality fermenting composts, a microorganism was isolated from the natural world. The bacterium has not only in high enzyme activities but also had good antimicrobial activities against phytopathogenic microorganisms. Its cultivating characteristics were then investigated. Bacterium KJ-9, which contains high CMCase, protease and chitinase activities and excellent antimicrobial activities against phytopathogenic microorganisms, was separated from leaf mold and identified as Bacillus licheniformis by two methods: Bergey's Manual of Systematic Bacteriology and API 50 CHL Carbohydrate Test Kit (Bio Merieux, France) using an ATB (Automated Identification) computer system (Bio Merieux, France). Optimal medium for cultivation of B. licheniformis was 2% soluble starch as a carbon source, 0.5% yeast extract as a nitrogen source and 0.05% $MgSO_4{\cdot}7H_2O$. Optimal growth conditions of pH, temperature and shake speed were pH 7.0, $50^{\circ}C$ and 180 rpm, respectively. Culture broth of B. licheniformis KJ-9 cultured for 36~60 hr was effective in fungicidal activities against plant pathogens including Botrytis cinerea, Corynespora cassicola, Fusarium oxysporum, and Rhizoctonia solani.

고품질의 발효퇴비를 생산할 목적으로 자연계로부터 효소활성이 높고 식물병원성 균주에 대한 항균활성이 우수한 미생물을 순수분리 하여 배양학적 특성을 검토하였다. 부엽토 등으로부터 CMCase, protease 및 chitinase 활성이 높고 식물병원성 균주에 대하여 항균활성이 우수한 KJ-9균주를 분리한 다음 형태학적 및 생화학적 특성을 검토하고 Bergey's Mannual of Systematic Bacteriology의 방법과 ATB (Automated Identification) computer system (Bio Merieux, France)을 이용한 API 50 CHL Carbohydrate Test Kit(Bio Merieux, France)를 통하여 동정한 결과 Bacillus licheniformis로 밝혀졌다. B. licheniformis KJ-9의 최적배지 성분을 검토한 결과 탄소원은 1.5% soluble starch, 질소원은 0.5% yeast extract, 무기염은 0.05% $MgSO_4{\cdot}7H_2O$ 이었으며, 배지의 초기 pH는 7.0, 배양온도는 $50^{\circ}C$ 그리고 진탕속도는 180 rpm으로 밝혀졌다. 최적배양 조건으로 B. licheniformis KJ-9를 배양하였을 때 36~60 hr째의 배양액은 잿빛 곰팡이병을 유발하는 Botrytis cinerea, 잎마름병의 원인균인 Corynespora cassicola, 시들음병을 유발하는 Fusarium oxysporum, 잘록병의 원인균인 Rhizocfonia solani의 식물병원성 미생물 균사생장을 효과적으로 억제하였다.

Keywords

References

  1. Anson, M. L. 1939. The estimation of pepsin, trypsin, papain and cathepsin with hemoglobin. J. Gen. Physiol. 22, 79-85. https://doi.org/10.1085/jgp.22.1.79
  2. Arima, K. H., M. Imanaka, K. A. Fukuta, and G. Tamura. 1964. Pyrrolnitrin, a new antibiotic substance, produced by Pseudomonas. Agric. Biol. Chem. 28, 575-576. https://doi.org/10.1271/bbb1961.28.575
  3. Brian, P. W., J. M. Wright, J. Stunns, and A. M. Way. 1951. Uptake of antibiotic metabolites of soil microorganisms by plant. Nature. 167, 347-349. https://doi.org/10.1038/167347a0
  4. Gregory, K. F., O. N. Allen, A. J. Riker, and W. H. Peterson. 1952. Antibiotics as agents for the control of certain damping-off fungi. Am J. Botany. 9, 405-415.
  5. Han, K. H. and S. D. Kim. 1999. Selection and identification of Promicromonospora sp. KH-28 producing chitinase and antifungal antibiotic. Kor. J. Appl. Microbiol. Biotechnol. 27, 191-196.
  6. Han, O. K., E. T. Lee, and S. D. Kim. 2001. Chitinase of multifunctional antagonistic bacterium Bacillus amyloliquefaciens 7079 against phytophathogenic fungi. Kor. J. Appl. Microbiol. Biotechnol., 29, 142-148.
  7. Holt, J. G., N. R. Krieg, P. H. A. Sneath, J. T. Staley, and S. T. Wiliilams. 1994. Bergey's mannual of determinative bacteriology. 9th. Wiliilams willkins.
  8. Jung, M. R. 1997. Isolation and characterization of Bacillus sp. producing chitosanase. Chonnam National University. M. S. Thesis.
  9. Kim, J. H. 2000. Production of an antibiotic effective for Bacillus sp. Konkuk University. M. S. Thesis.
  10. Kim, J. W. 2001. Growth effect of tomato treated with Bacillus sp. WDR-1 cultures. Dong-A University. Ph. D. Thesis.
  11. Kim, S. S., G. J. Joo, J. Y. Uhm, Y. J. Kim, and I. K. Lee. 1997. Antifungal Activity of Bacillus sp. SS279 and Biocontrol of Apple White Rot Fungus, Botryospaeria dothidea. Kor. J. Appl. Microbiol. Biotechnol., 25, 527-536.
  12. Ko, Y. H. 1982. Study on the antifungal antibiotics produced by a strain of the genus Streptomyces sp. Ph. D. Thesis, Seoul National University, Seoul, Korea.
  13. Lee, D. S., H. Kim, and M. Y. Park. 1984. Combination of colony formation and congo red reaction for detecting intra- and extra- cellular cellulolytic activities. Kor. J. Appl. Microbiol. Bioeng. 12, 305-309.
  14. Lee, E. T. and S. D. Kim. 1999. Isolation and antifungal activity of the chitinase producing bacterium Serratia sp. 3095 as Antagonistic Bacterium against Fusarium sp. Agric. Chem. Biothechnol. 42, 181-187.
  15. Lee, H. W., J. W. Choi, D. P. Han, N. W. Lee, S. L. Park, and D. H. Yi. 1996. Identification and production of constitutive chitosanase from Bacillus sp. HW-002. J. Microbiology and Biotechmology 6, 12-18.
  16. Leger, S. R. J., R. M. Cooper, and A. K. Charmley. 1986. Cuticle-degrading enzymes of entomopathogenic fungi: regulation of production of chitinolytic enzymes. J. Gen. Microbiol. 132, 1509-1517.
  17. Leoffler, W. J., S. M. Tschen, N. Vanittanakom, M. Kugler, E. Knorpp, T. F. Hsieh, and T. G. Wu. 1986. Antifungal effects of bacilysin and fengymycin from Bacillus subtilis F-29-3: a comparison with activaties of other Bacillus antibiotics. J. Phytopathol. 115, 204-213. https://doi.org/10.1111/j.1439-0434.1986.tb00878.x
  18. Mitchell, J. W., W. J. Zaumeter, and W. P. Anderson. 1952. Translocation of streptomycin in bean plant and its effect on bacterial blights. Science. 115, 114-115. https://doi.org/10.1126/science.115.2979.114
  19. Paulitz, T. C. and J. E. Loper. 1991. Lack of a role for fluorescent siderophore production in the biological control of Phythium damping-off cucumber by a strain of Pseudomonas putida. Phytopathol. 81, 930-935. https://doi.org/10.1094/Phyto-81-930
  20. Ru, M. G. 2003. Cloning and characterization of a gene for fibrinolytic enzyme from Bacillus subtilis A1. Jinju National University. M. S. Thesis.
  21. Schiewe, A. and K. Mendgen. 1992. Identification of antagonists for biological control of the post harvest pathogen Pezicula malicorticis and nectria galligena on apple. Phytopathology 134, 229-237. https://doi.org/10.1111/j.1439-0434.1992.tb01231.x
  22. Siegelm, M. and H. D. Sisker. 1977. Antifungal compounds Vol 2. Interactions in Ecological System. 227.
  23. Sneath, P. H. A., N. S. Mair, M. E. Sharpe, and J. G. Holt. 1984. Bergey's manual of systematic bacteriology, Vol. 2, 104-1207. Wiliilams and Willkins Press, New York.
  24. Takeuchi, S., K. Hirayama, K. Ueda, H. Sasaki, and H. Yonehara. 1958. Blasticidin S, a new antibiotic. J. Antibiot. 11, 1-5.
  25. Yun, K. H., E. T. Lee, and S. D. Kim. 2001. Identification and antifungal antagonism of Chryseomonas luteola 5042 against Phytophthora capsici. Kor. J. Appl. Microbiol. Biotechnol. 29, 186-193.

Cited by

  1. Isolation and Characterization of Bacillus subtilis MP56 with Antimicrobial Activity against MDR (Multi Drug Resistant) Strains vol.49, pp.1, 2013, https://doi.org/10.7845/kjm.2013.017
  2. Production of Antifungal Compost by Using Bacillus licheniformis KJ-9 vol.20, pp.9, 2010, https://doi.org/10.5352/JLS.2010.20.9.1339