DOI QR코드

DOI QR Code

Evaluation of Optimal Condition for Recombinant Bacterial Ghost Vaccine Production with Four Different Antigens of Streptococcus iniae-enolase, GAPDH, sagA, piaA

연쇄구균증 항원-enolase, GAPDH, sagA, piaA에 대한 재조합 고스트 박테리아 백신의 생산 최적화

  • Published : 2009.07.30

Abstract

A vector harboring double cassettes; a heterologous gene expression cassette of pHCE-InaN-antigen and a ghost formation cassette of pAPR-cI-E lysis 37 SDM was constructed and introduced to E. coli DH5a. For the production of a bacterial ghost vaccine, bacterial ghosts from E. coli / Streptococcus iniae with four different types of antigens - enolase, GAPDH, sagA and piaA - were produced by the optimization of fermentation parameters such as a glucose concentration of 1 g/l, agitation of 300 rpm and aeration of 1 vvm. Efficiency of ghost bacteria formation was evaluated with cultures of OD$_{600}$=1.0, 2.0 and 3.0. The efficiency of the ghost bacteria formation was 99.54, 99.67, 99.99 and 99.99% with inductions at OD$_{600}$=3.0, 1.0, 2.0 and 1.0 for E. coli/S. iniae antigens enolase, piaA, GAPDH and sagA, respectively. Ghost bacteria as a vaccine was harvested by centrifugation. The antigen protein expressions were analyzed by SDS-PAGE and western blot analysis, and the molecular weights of the enolase, piaA, GAPDH and sagA were 78, 26, 67 and 26 kDa, respectively. The molecular weights of the expressed antigens were consistent with theoretical sizes obtained from the amino acid sequences.

본 연구는 5-L 발효기를 이용하여 재조합 고스트 박테리아(E.coli $DH5{\alpha}$/ pHCE-InaN-(enolase, GAPDH, sagA or piaA)-ghost 37 SDM) 백신의 산업화를 위해 탄소원 공급조건, 교반속도, 산소공급 조건등의 최적 배양조건과 고스트 박테리아 발현 유도를 위한 온도조절 시점과 그에 따른 발현효율 최적화를 조사하기 위해 수행하였다. 각각 다른 4종의 항원 유전자를 보유한 고스트 박테리아를 LB 배지를 이용하여 배양한 결과 모두 1 g / 1 glucose, 300 rpm, 1vvm에서 최대 균주 성장을 나타내었다. 고스트 박테리아 생성 효율의 경우 초기 대수증식기(OD$_{600}$=1.0)에서 고스트 발현을 유도했을 때 각각 최대효율인 99.99%를 나타내었으나 증기 대수증식기(OD$_{600}$=2.0)와 말기 대수증식기 (OD$_{600}$=3.0)에서는 고스트 박테리아 생성이 낮은 효율을 나타내었다. 또한 SDS-PAGE 와 western blot를 이용하여 각각 다른 4종의 항원 단백질 발현 여주를 확인한 결과 enolase (78kda), GAPDH (67kda),sagA(26kDa), piaA(26kDa)에서 항원 단백질 band를 확인할 수 있었다. 따라서 본 연구결과 확립된 배양 조건과 발현효율 최적화 조건은 연쇄구균증 질병에 대해 E.coli를 이용한 고스트 박테리아 백신이 양식 산업에 있어 상업적으로 유용한 백신의 최적생산을 위해 사용 될 수 있을 것으로 사료된다.

Keywords

References

  1. Dubois, M., K. A. Gilles, J. K. Hamilton, P. A. Rebers, and F. Smith. 1956. Colorimeteric method for determination of sugars and related substances. Anal. Chem. 28, 350-356 https://doi.org/10.1021/ac60111a017
  2. Eko, F. O., A. Witte, V. Huter, B. Kuen, and S. Furst-Ladani. 1999. New strategies for combination vaccines based on the extended recombinant bacterial ghost system. Vaccine 17, 1643-1649 https://doi.org/10.1016/S0264-410X(98)00423-X
  3. Georgiou, G., C. Stathopoulos, P. S. Daugherty, A. R. Nayak B. L. Iverson, and R. Curtiss. 1997. Display of heterologous proteins on the surface of microorganisms: from the screening of combinatorial libraries to live recombinant vaccines. Nat. Biotechnol. 15, 29-34 https://doi.org/10.1038/nbt0197-29
  4. Haslberger, A. G., G. Kohl, D. Felnerova, U. B. Mayr, S. Furst-Ladani, and W. Lubitz. 2000. Activation, stimulation and uptake of bacterial ghosts in antigen presenting cells. J. Biotechnol. 83, 57-66 https://doi.org/10.1016/S0168-1656(00)00298-4
  5. Kwon, S. R., Y. K. Nam, S. K. Kim, D. S. Kim, and K. H. Kim. 2005. Generation of Edwardsiella tarda ghosts by bacteriophage PhiX174 lysis gene E. Aquaculture 250, 16-21 https://doi.org/10.1016/j.aquaculture.2005.02.052
  6. Kim, M. S., S. H. Choi, E. H. Lee, Y. K. Nam, S. K. Kim, and K. H. Kim. 2007. α-Enolase, a plasmin(ogen) binding and cell wall associating protein from a fish pathogenic Streptococcus iniae strain. Aquaculture 265, 55-60 https://doi.org/10.1016/j.aquaculture.2007.01.034
  7. Korz, D. J., U. Rinas, K. Hellmuth, E. A. Sanders, and W. D. Deckwer. 1995. Simple fed-batch technique for high cell density cultivation of Escherichia coli. J. Biotechnol. 59, 59-65 https://doi.org/10.1016/0168-1656(94)00143-Z
  8. Lin, Li, D. G. Kang, and H. J. Cha. 2004. Functional display of foreign protein on surface of Escherichia coli using N-terminal domain of ice nucleation protein. Biotechnol. Bioprocess Eng. 85, 214-221 https://doi.org/10.1002/bit.10892
  9. Modun, B. and P. Wiliams. 1999. The staphylococcal transferring- binding protein is a cell wall glyceraldehydes-3-phosphate dehydrogenase. Infect Immun. 67, 1086-1092
  10. Marchart, J., G. Dropmann, S. Lechleitner, T. Schlapp, G. Wanner, M. P. Szostak, and W. Lubitz. 2003. Pasteurella multocida and pasteurella haenolytica ghosts: new vaccine candidates. Vaccine 21, 3988-3997 https://doi.org/10.1016/S0264-410X(03)00383-9
  11. Nikaido, H. and J. A. Hall. 1998. Overview of bacterial ABC transporters. Methods Enzymol. 292, 3-20 https://doi.org/10.1016/S0076-6879(98)92003-1
  12. Nizet, V., B. Beall, D. J. Bast, V. Datta, L. Kilburn, D. E. Low, and J. C. DeAzavedo. 2000. Genetic locus for streptolysin S production by group A streptococcus. Infect Immun. 68, 4245-4254 https://doi.org/10.1128/IAI.68.7.4245-4254.2000
  13. Pancholi, V. and V. A. Fischetti. 1998. Alpha-enolase, a novel strong plasmin (ogen) binding protein on the surface of pathogenic streptococci. J. Biol. Chem. 273, 14503-14515 https://doi.org/10.1074/jbc.273.23.14503
  14. Ronchel, M. C., A. Molina, W. Witte, S. Lubitz, J. L. Molin, and C. Ramos. 1998. Characterization of cell lysis in Pseudomonas putida induced upon expression of heterologous killing genes. Appl. Environ. Microbiol. 64, 4904-4911
  15. Szostak, M. P., Hensel, A., Eko, F. O., Klein, T., Mader, and H., Haselberger. 1996. Bacterial ghosts: non-living candidate vaccine. J. Biotechnol. 44, 161-170
  16. Shiloach, J. and R. Fass. 2005. Growing E. coli to high cell density- a historical perspective on method development. Biotechnol. Adv. 23, 345-357 https://doi.org/10.1016/j.biotechadv.2005.04.004
  17. Sutcliffe, I. C. and R. R. Russell. 1995. Lipoproteins of gram-positive bacteria. J. Bacteriol. 177, 1123-1128
  18. Swiatlo, E. and D. Ware. 2003. Novel vaccine strategies with protein antigens of Streptococcus pneumoniae. FEMS Immunol. Med. Microbiol. 38, 1-7 https://doi.org/10.1016/S0928-8244(03)00146-9
  19. Thune, R. L., L. A. Stanley, and R. K. Cooper. 1993. Pathogenesis of Gram negative bacterial infections in warm fish. Annu. Rev. Fish Dis. 3, 37-68 https://doi.org/10.1016/0959-8030(93)90028-A
  20. Weinstein, M. R., D. E. Low, Mc A. Geer, B. Willey, D. Rose, M. Coulter, P. Wyper, A. Borczyk, and M. Lovgren. 1996. Invasive infection due to Streptococcus iniae: a new or previously unrecognized disease. Can. Commun. Dis. Rep. 22, 129-132
  21. Witte, A., G. Wanner, and W. Lubitz. 1992. Dynamics of PhiX174 protein E mediated lysis of Escherichia coli. Arch. Microbiol. 157, 381-388 https://doi.org/10.1007/BF00248685