• Title/Summary/Keyword: 발파지반진동

Search Result 170, Processing Time 0.023 seconds

Prediction of Principal Frequency of Ground Vibration from Delayed Blasting (지연시차에 따른 발파진동의 주파수 특성 예측)

  • Chung, Doo-Sung;Kang, Choo-Won;Ko, Jin-Seok;Chang, Ho-Min;Ryu, Pog-Hyun
    • Tunnel and Underground Space
    • /
    • v.20 no.2
    • /
    • pp.112-118
    • /
    • 2010
  • Before blasts that can have direct impacts on human bodies or structures, it is necessary to assess impacts of ground vibration. Therefore, frequency has been recognized as an important factor in order to assess impact on ground vibration and damages. There have been many studies on impacts of frequency. But, there have been no studies on relations between vibration and frequency according to delay time difference. In this study, we examined the relations between delay time difference and frequency according to each frequency with which reinforcement and destructive intervention repeat through delay time difference obtained using superposition modeling of single hole blasting waveform based on the theory of time difference developed by Langefors.

The Kingdome Implosion (미국 Kingdome 구조물 발파해체사례)

  • 대한화약발파공학회
    • Explosives and Blasting
    • /
    • v.18 no.4
    • /
    • pp.61-68
    • /
    • 2000
  • 본 기사는 2000년 3월 26일 미국 시애틀 소재 Kingdome 체육관 시설을 발파해체공법을 이용하여 해체한 사례로서 The Journal of Explosives Engineering(v.17 n.5, 2000)에 기고한 Dr. Douglas A. Anderson (Senior Consultant, West Chester, PA office of Schnabel Engineering Associates, Inc.)의 글을 옮긴 것이다. Kingdome 구조물의 해체와 해제 후 Seahawk Stadium 건설의 책임을 맡은 주계약자는 Turner Construction 회사이며 발파해체 사전준비 및 사후처리의 택일은 Aman Environment사, 발파해체 설계 및 시공은 CDI사, 주위 주요 구조물에 대한 영향평가 및 진동계측은 Schnabel Engineering Associates사가 맡아 수행하였다. 이 건물은 세계에서 가장 큰 규모의 쉘 콘크리트 돔 구조로 되어 있으며, 주위에 주요 구조물들이 위치하고 있고 특히 이 지역에 과거 발생했던 지진으로 인하여 주민들이 지반진동에 대한 피해나 또는 지진을 유발하수도 있다는 위험 가능성에 매우 예민하여 관심이 높았던 해체사례이다. 이 구조물을 한번에 붕괴시킬 경우 지반에 25,000톤의 중량이 충격으로 작용할 수 있으므로 충격을 최소화하기 위한 방법에 초점을 맞추어 설계되었으며 5,905개의 천공에 4,728파운드(약 2,145kg)의 폭약이 사용되었고 도폭선을 이용하여 기폭시켰다. 사용된 도폭선의 길이는 약 37.9 Km에 달하였다. 발파해체 기사에 나타나 있듯이 주위에 피해를 주지 않고 성공적으로 수행되었다.

  • PDF

Time-History Analysis on Structure Dynamic Response for the SDOF System of Ground Vibration by the Newmark $\beta$ method (Newmark $\beta$ 방법에 의한 지반진동의 단자유도계 구조물 동적응답 시간이력 해석)

  • Kim, Jong-In;Kang, Seong-Seung
    • Tunnel and Underground Space
    • /
    • v.20 no.4
    • /
    • pp.292-298
    • /
    • 2010
  • The purpose of this study is to evaluate an effect of ground vibration caused by blasting on the concrete brick structure. For the purpose, dynamic response time-history of the structure assumed single degree of freedom (SDOF) system and vibration time-history directly measured from the structure were examined, using Newmark $\beta$ method based on data measured at ground. The time-history was interpreted from the measured data of ground and structure in single hole blasting. Vibration magnitude between ground vibration and structure in single hole blasting and 20 ms interval blasting was about three times and was shown larger vibration on the structure. By time-history analysis of structure dynamic response, the value was almost the same one with the data measured from the structure. It indicates that the vibration characteristics of structures may be predicted on the basis of the ground vibration data measured from the sub-ground of structure.

A Study on the Efficiency of Horizontal Direction Deck-charge Blasting Method Using Electronic Detonator (전자뇌관을 이용한 수평방향 데크차지 발파공법의 효율성검토 연구)

  • Yoon, Ji-Sun;Hahn, Suk-Ju;Bae, Sang-Hun
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.4
    • /
    • pp.5-11
    • /
    • 2013
  • In close to downtown construction, the main problem is complaints caused by blasting vibration and noise. To reduce blasting vibration and noise, deck-charge blasting method using electronic detonator can be more secure because there is no cut-off problem. And in this method it is possible to blast in horizontal direction. In this study, the efficiency of horizontal direction deck-charge blasting method using electronic detonator is compared to that of the existing blasting method. And the possibility of applying the construction site is evaluated. As a result, the reduction of blasting vibration, noise and secondary breaking has been determined, as well as large-scale blasting in the vibration criterion can be regulated by the overall increase in blasting efficiency.

A Case Study on the Prediction of Underwater Sound by Measuring Ground Vibration (지반진동 측정을 통한 수중소음 예측 및 관리 적용사례)

  • Lim, Dae-Kyu;Cho, Kwang-Hyun;Jun, Yang-Bae
    • Explosives and Blasting
    • /
    • v.28 no.2
    • /
    • pp.86-98
    • /
    • 2010
  • As the quality of life is being upgraded, the public complaints about noise and vibration from construction sites are growing. Despite the disputes over the blasting damage on aquatic lives in river, ocean, and aquarium near construction sites tend to increase, most of existing solutions or regulations on the damages caused by blasting are established for the damages on land. Although the estimated amount of damage is up to several millions of USD, there is no guideline for resolving the dispute related to the underwater vibration. This paper presents an example where the public grievance about the underwater noise was successfully resolved by elucidating the characteristics of underwater sound, deducing the correlations between ground vibration and underwater sound during blast, and predicting the underwater sound level during blasting from the ground vibration measured on the ground near an aquarium basin.

Analysis on the Characteristics of Rock Blasting-induced Vibration Based on the Analysis of Test Blasting Measurement Data (시험발파 계측자료 분석을 통한 암석 발파진동 특성 분석)

  • Son, Moorak;Ryu, Jaeha;Ahn, Sungsoo;Hwang, Youngcheol;Park, Duhee;Moon, Duhyeong
    • Journal of the Korean GEO-environmental Society
    • /
    • v.16 no.9
    • /
    • pp.23-32
    • /
    • 2015
  • This study examined blast testing measurement data which had been obtained from 97 field sites in Korea to investigate the comprehensive characteristics of rock blasting-induced vibration focusing on the effect of excavation types (tunnel, bench) and rock types. The measurement data was from the testing sites mostly in Kangwon province and Kyungsang province and rock types were granite, gneiss, limestone, sand stone, and shale in the order of number of data. The study indicated that the blasting-induced vibration velocity was affected by the excavation types (tunnel, bench) and bench blasting induced higher velocity than tunnel blasting. In addition, the vibration velocity was also highly affected by the rock types and therefore, it can be concluded that rock types should be considered in the future to estimate a blasting-induced vibration velocity. Furthermore, the pre-existing criteria was compared with the results of this study and the comparison indicated that there was a discernable difference except for tunnel blasting results based on the square root scaling and therefore, further studies and interests, which include the effects of rock strength, joint characteristics, geological formation, excavation type, power type, measurement equipment and method, might be necessarily in relation to the estimation of blasting-induced vibration velocity in rock mass.

Analysis of Blasting Vibration at the Irregular Layered Structure Ground (불규칙한 층상구조 지반에서의 발파진동 분석)

  • Kim, Seung Hyun;Lee, Dong Wook
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.5
    • /
    • pp.891-901
    • /
    • 2016
  • By comparing test blasting data experimented in three layered-structure polymorphic grounds to a geological profile, influence of blast vibration with respect to uncontrollable ground characteristics was analyzed. Inefficient blast have been performed without sufficient verifications or confirmations because insufficiencies with regard to experiments and data of blasting engineering on the layered structures to be irregularly repeated clinker layer consisted of volcanic clastic zones. It is difficult to quantify N values of clinkers within test blasting region because they have diverse ranges, or coverages. An absolute value of attenuation coefficient N in a field, estimated by blasting vibration predictive equation (SRSD), are lesser than criteria of a design instruction, meaning that vibrations caused by blast can spread far away, and the vibrational characteristics of blasting test No.1, indicating relatively small values, inferred by the geological profile, pressures of gas by the explosion may be lost into a widely distributed clinker layers by penetrating holes resulted from blast into vicinity of clinker layers located in bottom of soft rock layers at the moment of blast. As a result, amounts of spalling rocks are decreased by almost half. Also, ranges of primary frequencies in the fields are identified as similar to those of natural frequency of typical structures.

A Study on the Correlation between Underwater Noise and Ground Vibration (지반진동과 수중소음의 상관성 연구)

  • Park, Jung-Bong;Kang, Choo-Won;Lee, Chang-Won
    • Explosives and Blasting
    • /
    • v.31 no.1
    • /
    • pp.11-22
    • /
    • 2013
  • This study compared and analysed ground vibration, size of underwater background noise in fish farms and underwater object noise of blasting and obtained ground vibration prediction equation through a regression analysis and correlation equation between underwater object noises in order to predict degrees of underwater noise in blasting and organize underwater noise control regulations. Before the study, when background noise of fish and shellfish farms with different conditions was measured, levels of background noise were different according to environmental characteristics of each farm. Ground vibration which causes underwater noise was measured to obtain a correlation equation between ground vibration and underwater object noise. Therefore, if underwater noise is predicted for each construction with a use of a correlation and permissible standards appropriate for each condition are applied for design and construction, financial loss from damages to fish and shellfish caused by development of insufficient technological and engineering logic can be prevented and successful construction with safety of underwater creatures guaranteed can be achieved.

구조물 및 시설물이 인접한 구릉지 암반굴착 발파설계

  • 류창하;선우춘;신희순;정소걸;최병희
    • Proceedings of the Korean Society for Rock Mechanics Conference
    • /
    • 1994.03a
    • /
    • pp.81-88
    • /
    • 1994
  • 본 연구는 S시의 택지개발사업지역을 대상으로 암반굴착 작업을 위한 발파설계 기준의 마련과 효율적인 발파공법을 도출하기 위한 목적으로 수행되었다. 대상지역은 구획 정리사업이 본격화됨에 따라 풍화암을 포함한 리핑가능한 부분에 대한 절토작업이 거의 완료되고 리핑방법을 적용하기 어려운 암굴착을 위하여 화약발파를 이용한 암발파 작업이 요구되고 있으나 인접한 지역에 주요 구조물들과 micron/sec 단위의 허용수준을 요구하는 진동에 매우 민감한 시설물들이 있어 발파작업으로 인한 지반진동의 영향문제가 매우 심각한 지역이다. (중략)

  • PDF

A Study on the Evaluation of Famage Zone around Tunnel Induced by Blasting (발파에 의한 터널 주변 암반의 손상영역 평가에 관한 연구)

  • 장수호;신일계;최용근;이정인
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.5
    • /
    • pp.129-140
    • /
    • 2000
  • 최근들어 핵폐기물 지하처분장을 중심으로 터널굴착에 의한 주변 암반의 손상상태와 암반특성의 변화를 정량적으로 평가하기 위한 시도가 이루어지고 있다. 이는 암반의 지지력을 적극적으로 이용하는 NATM개념에 의해 터널을 시공할 셩우 안정성 해석과 최적 보강설계를 위해 필수적인 사항으로 고려된다. 그러나 현재까지 암반 손상영역을 평가하기 위해 제시된 여러 방법들은 아직까지 그 적용성과 타당성이 충분히 검증되지 못한 실정이다. 이 연구에서는 코어시추, 실험실시험, 발파진동측정, 보어홀 카메라 등의 여러 방법에 의해 손상영역을 정량적으로 평가하고자 하였으며 가 방법의 적용성을 검토하였다. 암반상태 및 발파조건을 달리하여 시험발파를 수행하였으며 발파 후에 터널벽면에 수직하게 시추를 하여 암석코어를 채취한 뒤 손상정도에 따른 암석의 물리적, 역학적 특성들? 변화를 정량적으로 나타내고자 하였다. 코어 채취후 시축공에 보어홀 카메라를 사용하여 손상영역을 시각적으로 판별하고자 하였으며 발파진동 측정결과로부터 손상영역을 예측하고 채취한 암석시표에 대한 실험실시험 결과와 비교하여 적용성을 검토하였다.

  • PDF