• Title/Summary/Keyword: 발사제어기

Search Result 118, Processing Time 0.024 seconds

Results Analysis for On-orbit Operation of KOMPSAT-1 Propulsion System (다목적실용위성 1호 추진시스템 궤도운용 결과 분석)

  • 김정수;한조영;진익민
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.4 no.4
    • /
    • pp.107-113
    • /
    • 2000
  • Design configuration and performance requirements for KOMPSAT-1 propulsion system were described. Operational results of the propulsion system obtained through the satellite Launch and Early Operation Phase were scrutinized. Performance characteristics of the thrusters which are employed for spacecraft attitude control and the corresponding propellant depletion rate were analysed according to satellite operation modes. Additionally, propellant leakproof and thermal control capability were checked out from the view point of system verification. Propellant depletion rates calculated by PVT method in $\Delta$V maneuvering and each attitude control mode produce the very meaningful results for the prediction of total propellant consumption up to the end of satellite mission life.

  • PDF

Effects of Catalyst Granule Failure in Monopropellant Satellite Thruster (단일추진제 위성추력기에서 촉매 파손에 의한 영향)

  • Hwang, Chang-Hwan;Lee, Sung-Nam;Baek, Seung-Wook;Kim, Su-Kyum;Yu, Myoung-Jong
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.15 no.6
    • /
    • pp.7-14
    • /
    • 2011
  • Various sizes of hydrazine monopropellant thruster have been used on satellite and space launcher vehicle. The test and handling procedure of hydrazine monopropellant thruster are usually difficult because of the toxicity of hydrazine and its decomposition product gases. Therefore, the numerical analysis can help understand the effects of various design parameters and can reduce the time as well as expenses. In this study, the numerical analysis is performed by modelling the catalyst bed as one dimensional porous medium. Thereby, resulting physical phenomena are examined by considering the variation of catalyst bed characteristics incurred by catalyst granule failure.

단일추진제 분해촉매의 연소성능 시험 및 시제품 개발

  • Lee, Kyun-Ho;Yu, Myoung-Jong;Kim, Su-Kyum;Choi, Joon-Min
    • Aerospace Engineering and Technology
    • /
    • v.4 no.1
    • /
    • pp.49-56
    • /
    • 2005
  • Hot firing performance test of hydrazine decomposition catalyst used for monopropellant thruster of the satellite and the launch vehicle was performed. Test equipment for catalyst test was developed in collaboration with Hanwha Corp., reaction delay time, catalyst activity and granule stability of the catalyst firing performance were measured and analyzed with the equipment. In addition, the current development of prototype catalyst is introduced.

  • PDF

The Design of Path Length Controller in Ring Laser Gyroscope for Attitude Control in the space launch vehicle (우주발사체 자세제어용 링 레이저 자이로 피에조 구동기 설계)

  • Kim, Eui-Chan;Yang, Koon-Ho
    • Aerospace Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.31-35
    • /
    • 2010
  • The Ring Laser Gyroscope makes use of the Sagnac effect within a resonant ring cavity of a He-Ne laser and has more accuracy than the other gyros. The space launch vehicle use require the high accuracy Gyro to control and determine the altitude to deliver the satellite in the space. In this paper, The theory of the Path Length Control is explained. The electrical design of Path Length Controller is described. The Design for Path Length Controller is composed of the demodulator, integrator, phase shifter, high voltage amplifier. We apply the circuit to 28cm square ring laser gyro and get the test results.

지구 저궤도 고해상도 관측위성의 개발 동향

  • Kim, Gyu-Seon;Jeong, Dae-Won
    • Current Industrial and Technological Trends in Aerospace
    • /
    • v.4 no.1
    • /
    • pp.68-73
    • /
    • 2006
  • 1990년대 중반이후 선진외국의 위성 제작사들은 상업적인 목적으로 소형 위성체에 고해상도 광학 탑재체를 탑재한 위성을 개발하기 시작하였다. 특히 미국의 Lockheed Martin사에서 IKONOS라는 상업용 고해상도 지구관측 위성을 개발한 이후 미국 및 유럽의 선진외국 사에서 유사한 위성을 개발하여 미국 내 정부의 수요 및 해외고객의 수요를 충족시켰다. 최근 다음 세대 위성의 개발이 진행되어 1-2년 내에 발사를 앞두고 있는데 미국 내의 개발 동향은 위성의 대형화를 통한 성능 및 수명 증대와 더불어 고용량 자세제어 작동기를 사용한 고 기동성능 확보로 요약할 수 있으며, 탑재체 성능의 경우에는 PAN 채널의 경우 0.5 m 이하의 해상도를 갖는 성능 증대를 보이고 있다. 본 기술동향에서는 기존의 개발 되어있는 고해상도 지구관측위성의 특성을 살펴보고 향후 지구 저궤도 고해상도 관측위성의 개발동향에 대하여 분석하였다.

  • PDF

고진공하 우주열환경 모사방법 및 장치 설계

  • Lee, Sang-Hun;Jo, Chang-Rae;Lee, Dong-U;Mun, Gwi-Won
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.103.1-103.1
    • /
    • 2013
  • 위성의 발사, 천이궤도, 운영궤도 등에서 위성체에 주어지는 극한 온도와 진공상태에서 위성체와 열 제어시스템이 요구 조건을 만족시키는가를 확인하기 위하여 열진공시험을 수행한다. 열진공시험은 기본적으로 고진공 환경 하에서 심우주의 극저온 온도 모사가 가능해야 한다. 현재 산업용으로 일반적으로 사용하고 있는 냉동기의 경우는 최저 $-70^{\circ}C$ 까지 도달 가능하므로 심우주모사에 적당하지 않아, 주로 액체질소 및 기체질소를 이용한 냉각장치를 사용하고 있다. 본 논문에서는 진공하에서 심우주의 극저온 및 고온의 열환경을 모사할 수 있는 방법 및 장치의 개념 설계에 대해 알아보고자 한다.

  • PDF

Evaluation of the Inherent Flow Coefficient of the Control Valve in the Liquid Propellant Rocket Engine (액체로켓 엔진 성능 보정용 제어밸브의 고유유량특성 계산)

  • Park, Soon-Young;Cho, Won-Kook;Seol, Woo-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.585-589
    • /
    • 2010
  • It is important for the liquid rocket engine to meet the exact performance requirements in order to guarantee the successful mission of the launch vehicle. Usually, a ground combustion test for the engine is conducted to reduce the performance error and for the tuning. For the gas-generator (GG) cycle engine, this adjustment process can be easily tuned by means of the control valves. A linearized correlation between the process parameters of the control - the combustion chamber pressure and the mixture ratio of engine - and the independent parameter of the control- rotational angle of the control valve - could be suitable to reduce the tuning errors. Also this linearity can reduce the effort for the tuning and make the process more explicit by ensuring a more intuitive control. In this point, we proposed an algorithm in the frame of the in-house-developed program to obtain the control valves' inherent characteristics which satisfy the linearity.

  • PDF

Analysis of GEO Satellite Sun Sensor Models and Sun Sensor SW Resource Processing Technology (정지궤도위성 자세제어계 태양센서 운용기술 동향)

  • Park, Keun-Joo;Park, Young-Woong;Yang, Koon-Ho
    • Current Industrial and Technological Trends in Aerospace
    • /
    • v.7 no.2
    • /
    • pp.121-130
    • /
    • 2009
  • In this paper, the attitude and orbit control subsystem technology of new GEO communication and observation satellite using Sun sensors are introduced and analyzed. COMS is new GEO communication and Earth observation satellite based on EUROSTAR 3000 space bus technology. The attitude and orbit control subsystem of COMS adopts a configuration using three BASS and three LIASS Sun sensors to acquire the attitude error information in the specific reference frames. These Sun sensors are used to acquire Sun direction and to control the spacecraft to keep the relative attitude with respect to a reference Sun direction in both transfer and operational orbits. In this paper, the mathematical models of BASS and LIASS are described as well as their operational implementation in the flight software.

  • PDF

Conceptual Design of a LOX/Methane Rocket Engine for a Small Launcher Upper Stage (소형발사체 상단용 액체메탄 로켓엔진의 개념설계)

  • Kim, Cheulwoong;Lim, Byoungjik;Lee, Junseong;Seo, Daeban;Lim, Seokhee;Lee, Keum-Oh;Lee, Keejoo;Park, Jaesung
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.26 no.4
    • /
    • pp.54-63
    • /
    • 2022
  • A 3-tonf class liquid rocket engine that powers the upper stage of a small launcher and lifts 500 kg payload to 500 km SSO is designed. The small launcher is to utilize the flight-proven technology of the 75-tonf class engine for the first stage. A combination of liquid oxygen and liquid methane has been selected as their cryogenic states can provide an extra boost in specific impulse as well as enable a weight saving via the common dome arrangement. An expander cycle is chosen among others as the low-pressure operation makes it robust and reliable while a specific impulse of over 360 seconds is achievable with the nozzle extension ratio of 120. Key components such as combustion chamber and turbopump are designed for additive manufacturing to a target cost. The engine system provides an evaporated methane for the autogenous pressurization system and the reaction control of the stage. This upper stage propulsion system can be extended to various missions including deep space exploration.

Performance and Thermal Design Validation for FM STEP Cube Lab. (큐브위성 STEP Cube Lab. 비행 모델의 열진공시험을 통한 성능 및 열제어계 설계 검증)

  • Kang, Soo-Jin;Jung, Hyun-Mo;Seo, Joung-Ki;Oh, Hyun-Ung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.9
    • /
    • pp.814-821
    • /
    • 2015
  • The STEP Cube Lab. classified as a pico-class satellite has been successfully developed as a flight model(FM) to be launched in 2015. Its mission objective is to perform the on-orbit verification of fundamental space core-technologies. In this study, a thermal design concept based on the passive method to achieve the mission objective is introduced. The effectiveness of the thermal design and performance of the satellite has been verified through the acceptance level thermal vacuum test. In addition, to improve the reliability of thermal mathematical model, correlation was performed using the results of thermal balance test. This paper describes a series of process for the thermal vacuum test on the STEP Cube Lab. FM.