• Title/Summary/Keyword: 반복 가력

Search Result 152, Processing Time 0.025 seconds

Quantitative Damage Model of Steel Members under Severe Seismic Loading (강한 지진하중하에서 강부재의 정량적인 손상 모델)

  • Park, Yeon Soo;Park, Sun Joon
    • Journal of Korean Society of Steel Construction
    • /
    • v.10 no.3 s.36
    • /
    • pp.339-353
    • /
    • 1998
  • In this paper, the previous damage models for structures and their components under seismic repeated loading were reviewed systematically. A failure criterion for steel members under severe cyclic excitations as in strong earthquakes was described. A new approach to seismic damage assessment for steel members was proposed. This method was based on a series of the experimental and numerical investigations for steel members under very low cyclic loading. In this study, very low cyclic loading means repetitive loading, 5 to 20 loading cycles, within the large plastic range. The proposed damage assessment method was focused on the local strain history at the cross-section of the most severe concentration of deformation.

  • PDF

Structural Performances of an Axially-loaded Node in Single Layered Free Form Space Structures (단층 프리폼 대공간 구조물의 노드에 대한 축하중 구조성능 평가)

  • Lee, Kyoung-Ju;Oh, Jin-Tak;Hwang, Kyung-Ju;Ju, Young-Kyu;Kim, Sang-Dae
    • Journal of Korean Society of Steel Construction
    • /
    • v.24 no.1
    • /
    • pp.59-71
    • /
    • 2012
  • Results of the analysis of the structural behavior of axially loaded nodes in freeform structure were not fully understood due to certain difficulties, including the application of various welding and bolting types. In this study, a node of single layered freeform structure was tested to determine its structural behavior when subjected to axial loads. The tests were classified into node ball tests to evaluate the center of the node subjected to cyclic and monotonic loading. The node part tests were also conducted to evaluate the whole node subjected to monotonic loading. The test showed that the node ball is safe with the tensile force, but the node ball needs to increase its strength with the node loaded compressive force due to the additional bending moment of the node ball's asymmetric form.

Experiments of the Lateral Loading Capacity of Exterior Joints of Non-seismically Designed RC Frames in Korea (비내진설계된 우리나라 RC 외부 접합부의 횡저항 능력에 관한 실험)

  • Lee, Young-Wook;Park, Hyeong-Kyeon
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.14 no.4
    • /
    • pp.29-36
    • /
    • 2010
  • To investigate the cyclic characteristics of exterior joints in RC frame buildings which are typically used after 1988, 70% scaled T-shaped beam-column subassemblies were designed and tested with a displacement control that is composed of 9 steps, until 3.5% story drift was reached. Axial forces are applied to columns during the experiment to simulate a real situation. The results show that the non-seismic detailed specimens failed before reaching 0.85% story drift, and their strengths are less than 0.85 times the nominal flexural strength which beam or columns should reach. The relationship of principal stress and story drift of exterior joints is similar to the one that Priestly proposed.

An Experimental Study of the Composite Slab under a Repeated Loading (단조 반복하중이 작용하는 합성슬래브의 거동에 대한 실험적 연구)

  • Eom, Chul Hwan;Kim, Hee Cheul;Park, Jin Young;Seo, Sang Hoon
    • KIEAE Journal
    • /
    • v.7 no.5
    • /
    • pp.143-148
    • /
    • 2007
  • The application of metal deck floor system is increasing gradually and especially for office buildings. In the cases of large parking structures and storage structures, the construction period and the cost can be reduced. Also the steel deck system can prevent the crack of a floor and reduce the retrofit expenses. However, the floor should stand for the repeated truck load which is relatively heavier repeated loading. The mechanical behavior of a slab under repeated load is also different from the static loading state. An evaluation of a structural capacity was performed in this study through the dynamic capacity evaluation experiment for an application of a composite deck floor system as a parking structure slab. The period of repeated loadings were set up as 25years and 960,000 times monotone cyclic loads were applied at the center of the specimens. The tension crack propagation and patterns at the center of specimens were examined.

Cyclic Test for RC Frame with Infilled Steel Plate (강판채움벽을 갖는 RC 골조에 대한 반복가력 실험)

  • Choi, In Rak;Park, Hong Gun
    • Journal of Korean Society of Steel Construction
    • /
    • v.21 no.2
    • /
    • pp.115-125
    • /
    • 2009
  • An experimental study was performed to investigate the cyclic behavior of the reinforced concrete frame with infilled steel plate. For this purpose, three-story compositewalls using infilled steel plates (RCSPW) were tested. The parameters for this test were the reinforcement ratio of the column and opening in the infilled steel plate. A reinforced concrete infilled wall (RCIW) and a reinforced concrete frame (RCF) were also tested for comparison. The deformation capacity of the RCSPW specimen was significantly greater than that of the RCIW specimen, although the two specimens exhibited the same load-carrying capacity. Like the steel plate walls with the steel boundary frame, RCSPW specimens showed excellent strength, deformation capacity, and energy dissipation capacity. Furthermore, by using infilled steel plates, shear cracking and failure of the column-beam joint were prevented. By using a strip model, the stiffness and strength of the RCSPW specimens were predicted. The results were compared with the test results.

Seismic Performance of Shear Dominant Hybrid Steel Link Beam with Circular Web Opening (원형 개구부가 있는 전단지배 하이브리드 강재 연결보의 내진성능)

  • Lim, Woo-Young
    • Journal of Korean Society of Steel Construction
    • /
    • v.30 no.1
    • /
    • pp.37-48
    • /
    • 2018
  • Cyclic loading tests for shear dominant hybrid steel link beams with circular web openings were performed to evaluate the seismic performance. Four half-scaled specimens with bolted connections were tested. The test parameter is a diameter of the web opening, i.e., shear strength ratio ($V_{pw}/V_p$) of the link beam and presence of top-seat angles. Using test results, adequate design shear strength of link beam was finally suggested. Test results showed that when the shear capacity is less than half of the plastic shear strength, seismic performance was improved due to mitigation of pinching under reversed cyclic inelastic deformations.

Seismic Performance of Beam-to-column Weak-axis Moment Connection of Small-size Steel Structure (소규모 철골조 보-기둥 약축 모멘트 접합부의 내진성능)

  • Lim, Woo-Young;You, Young-Chan
    • Journal of Korean Society of Steel Construction
    • /
    • v.29 no.2
    • /
    • pp.169-180
    • /
    • 2017
  • Cyclic loading tests for beam-to-column weak-axis connections were performed to investigate the seismic performance. In this study, the connections were developed to improve the constructability on the basis of investigation for existing small-size steel structures. The primary test parameter is the number of high-tension bolts which are used to connect steel beam and column using exterior and interior flange plates. Test results showed that the number of bolts had a significant effect on the cyclic behavior of beam-column weak-axis connections. From the analysis of test results, it is concluded that more than four bolts in the connections can satisfy the requirements of semi-rigid connection presented in current design codes. All of specimens showed the bearing failure around bolt holes and fracture at the beam flange. However, when the web height and the flange width is relatively small, the number of the bolts used in the connections might be limited. Thus, the additional research in this area is needed.

Seismic Performance of Built-up Concrete Filled Square Composite Column-to beam Connection with Through Diaphragm (관통형 다이아프램을 갖는 조립형 콘크리트 충전 각형 합성기둥-보 접합부의 내진성능)

  • Kim, Sun Hee;Yom, Kyong Soo;Choi, Sung Mo
    • Journal of Korean Society of Steel Construction
    • /
    • v.26 no.5
    • /
    • pp.431-439
    • /
    • 2014
  • Concrete filled tubular columns are widely used because the mutual reaction between the concrete and the tube improves strength and ductility of the columns. In an attempt to secure efficient use of members, built-up square columns featuring large width-thickness ratio and the use of thin steel plates are suggested in this study. In order to evaluate the structural characteristics and seismic performance of the column-to-beam connections of the new shape columns, cyclic load test of T-shaped column-to-beam connections was conducted with variables of diaphragms and concrete-filling. Moment-rotational angle relationship, dissipated energy and failure behavior were compared to evaluate stress transfer mechanism of the new shape built-up square column-to-beam connections associated with the variables.

Pile-cap Connection Behavior Dependent on the Connecting Method between PHC pile and Footing (PHC말뚝과 확대기초 연결방법에 따른 접합부 거동)

  • Bang, Jin-Wook;Oh, Sang-Jin;Lee, Seung-Soo;Kim, Yun-Yong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.3
    • /
    • pp.25-32
    • /
    • 2016
  • The pile-cap connection part which transfers foundation loads through pile body is critical element regarding flexural and shear force because the change of area, stress, and stiffness occurs in the this region suddenly. The purpose of this study is to investigate the structural behavior of pile-cap connection dependent on fabrication methods using conventional PHC pile and composite PHC pile. A series of test under cyclic lateral load was performed and the connection behavior was discussed. From the test results, it was found that the initial rotational stiffness of pile-cap connection was affected by the length of pile-head inserted in footing and the location of longitudinal reinforcing bars. The types of pile and location of longitudinal reinforcing bars governed the behavior of pile-cap connection regarding load-carrying capacity, ductility, and energy dissipation.

Seismic Evaluation of Welded-formed square Column-Beam Connection for External Diaphragm Stress path (외다이아프램 응력경로에 따른 용접조립 각형기둥-보 접합부의 내진성능 평가)

  • Kim, Sun Hee;Yom, Kyong Soo;Choi, Sung Mo
    • Journal of Korean Society of Steel Construction
    • /
    • v.26 no.4
    • /
    • pp.311-322
    • /
    • 2014
  • Concrete filled tubular structure should be installed diaphragms for moment connection. However internal and through diaphragm should be special welded when connected to column tube. The other hand, that has become increase of stress concentration and extend of construction error. Therefore, In this study the seismic performance of beam to column connections with External Diaphragms and implement cycle loading experiment. we had evaluated seismic performance with mentioned experiment which is concrete filled or not, variable shapes, to be welded or not of diaphragm. Also, formula of strength of external diaphragm was analyzed and looked into adequacy with regard to formula of tension strength.