Cyclic Test for RC Frame with Infilled Steel Plate

강판채움벽을 갖는 RC 골조에 대한 반복가력 실험

  • Received : 2008.12.10
  • Accepted : 2009.02.16
  • Published : 2009.04.27

Abstract

An experimental study was performed to investigate the cyclic behavior of the reinforced concrete frame with infilled steel plate. For this purpose, three-story compositewalls using infilled steel plates (RCSPW) were tested. The parameters for this test were the reinforcement ratio of the column and opening in the infilled steel plate. A reinforced concrete infilled wall (RCIW) and a reinforced concrete frame (RCF) were also tested for comparison. The deformation capacity of the RCSPW specimen was significantly greater than that of the RCIW specimen, although the two specimens exhibited the same load-carrying capacity. Like the steel plate walls with the steel boundary frame, RCSPW specimens showed excellent strength, deformation capacity, and energy dissipation capacity. Furthermore, by using infilled steel plates, shear cracking and failure of the column-beam joint were prevented. By using a strip model, the stiffness and strength of the RCSPW specimens were predicted. The results were compared with the test results.

철근콘크리트 골조에 얇은 강판채움벽을 접합한 합성벽의 내진 성능을 연구하기 위한 실험을 실시하였다. 실험체로서 얇은 채움강판을 사용한 3층 합성벽을 사용하였다. 주요 실험 변수는 기둥의 철근비와 채움벽의 개구부이다. 비교를 위하여 철근콘크리트 채움벽과 철근콘크리트 골조에 대한 실험을 실시하였다. 강판채움벽을 갖는 합성벽 실험체는 철근콘크리트 채움벽과 동일한 하중재하능력을 나타내면서도 변형능력이 크게 향상되었다. 또한 철골 골조를 사용한 강판벽 시스템과 마찬가지로 우수한 강도, 큰 변형능력 및 에너지소산 능력을 나타냈다. RC 골조에 대한 강판채움벽의 보강효과로 기둥-보 접합부의 전단균열과 손상을 방지할 수 있었다. 스트립 모델을 사용한 해석 연구를 통하여 합성벽 실험체의 강성 및 강도를 예측하였으며, 해석결과를 실험결과와 비교했다.

Keywords

References

  1. American Concrete Institute (ACI Committee 318). (2005). Building code requirements for structural concrete (ACI 318-05), and Commentary (ACI 318R-05), Farmington Hills, Mich
  2. American Institute of Steel Construction (AISC). (2005). Seismic provisions for structural steel buildings, Chicago
  3. Berman. J. and Bruneau. M. (2003). Plastic analysis of steel plate shear walls, J. Struct. Eng., 129(11), 1148-1456
  4. Caccese, V., Elgaaly, M., and Chen, R. (1993). Experimental study of thin steel-plate shear walls under cyclic load, J. Struct. Eng., 119(2), 573-587 https://doi.org/10.1061/(ASCE)0733-9445(1993)119:2(573)
  5. Driver, R. G., Kulak, G. L., Kennedy, D. J. L., and Elwi, A. E. (1997). Seismic behavior of steel plate shear walls, Structural Engineering Rep. No. 215, Dept. of Civil Engineering, Univ. of Alberta, Edmonton, Alberta, Canada
  6. Elgaaly, M. (1998). Thin steel plate shear walls behavior and analysis, Thin-Walled Struct., 32, 151-180 https://doi.org/10.1016/S0263-8231(98)00031-7
  7. Lubell, A. S., Prion, H. G. L., Ventura, C. E., and Rezai, M. (2000). Unstiffened steel plate shear wall performance under cyclic loading, J. Struct. Eng. 126(4), 453-460 https://doi.org/10.1061/(ASCE)0733-9445(2000)126:4(453)
  8. Mazzoni, S., McKenna, F., Scott, M. H., Fenves, G. L., et al. (2006). Open System for Earthquake Engineering Simulation, User Command - Language Manual, Version 1.7.3, Pacific Earthquake Engineering Research Center, Univ. of California, Berkeley, Calif. (http://opensees. berkley.edu/OpenSees/manuals/usermanual/index.html)
  9. Park, H. G., Kwack, J. H., Jeon, S. W., Kim, W. K., and Choi, I. R. (2007) Framed steel plate wall behavior under cyclic lateral loading, J. Struct. Eng. 133(3), 378-388 https://doi.org/10.1061/(ASCE)0733-9445(2007)133:3(378)
  10. Thorburn, L. J., Kulak, G. L., and Montgomery, C. J. (1983). Analysis and design of steel shear wall system, Structural Engineering Rep. No. 107, Dept. of Civil Engineering, Univ. of Alberta, Alberta, Canada
  11. Timler, P. A., and Kulak, G. L. (1983). Experimental study of steel plate shear walls, Structural Engineering Rep. No. 114, Dept. of Civil Engineering, Univ. of Alberta, Alberta, Canada