• Title/Summary/Keyword: 반복삼축시험

Search Result 81, Processing Time 0.02 seconds

Characteristics of Shell-Residual Soil Mixture Deformation by Cyclic Loading (반복재하에 의한 고막껍질-풍화잔류토 혼합토의 변형 특성)

  • Chang, Yong-Chai;Seo, Ji-Woong;Lee, Seung-Eun
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.8
    • /
    • pp.47-55
    • /
    • 2009
  • This research has the purpose to examine the potential of shell, a byproduct of maritime products to be utilized as alternative environment-friendly construction material by mixing and applying it with residual soit which is used as burial or filling material to recycle it. To that end, the research looked into the mechanical characteristics of shell through cyclic triaxial test by mixing it with residual soil. With the mixing ratios of shell of 5 groups set at 5.0%, 10.0%, 20.0%, 40.0% and 60.0%, the mixture soils was processed through a series of cyclic triaxial tests. And it was shown that liquefation resistance has limitation in the mixed soils with shell substitute content ratios exceeding 20.0%. To increase the liquefaction resistance of the mixed soil, this research has shown that addition of moderate amount of glass fibers would suffice.

Analysis of the Characteristics of Liquidization Behavior of Sand Ground in Korea Using Repeated Triaxial Compression Test (반복삼축압축시험을 이용한 국내 모래지반의 액상화 거동 특성 비교)

  • Seo, Hyeok;Kim, Daehyeon
    • The Journal of Engineering Geology
    • /
    • v.31 no.4
    • /
    • pp.493-506
    • /
    • 2021
  • Liquefaction refers to a phenomenon in which excessive pore water pressure occurs when a dynamic load such as an earthquake rapidly acts on a loose sandy soil saturated with soil, and the ground loses effective stress and becomes liquefied. The indoor repeated test for liquefaction evaluation can be confirmed through the repeated triaxial compression test and the repeated shear test. In this regard, this study tried to confirm the liquefaction resistance strength according to the relative density and particle size distribution of sand using the repeated triaxial compression test. As a result of the experiment, it was confirmed that the liquefaction resistance strength increased as the relative density increased regardless of the soil classification, and the liquefaction resistance strength according to the particle size distribution of the sand was confirmed that the liquefaction resistance strength of the SP sample close to SW was significantly higher. In addition, as a result of analyzing 30% of fine powder compared to 0% of fine powder, as the relative density increased to 40~70%, the liquefaction resistance strength decreased by 5~20%, and the domestic weathered soil ground had a fine liquefaction resistance strength compared to Jumunjin standard sand. When the minute was 10%, it was measured to be 30% or more, and when the fine particle was 30%, it was measured to be less than 50%.

An Estimating Method for Post-cyclic Strength and Stiffness of Eine-grained Soils in Direct Simple Shear Tests (직접단순전단시험을 이용한 동적이력 후 세립토의 강도 및 강성 예측법)

  • Song, Byung-Woong;Yasuhara, KaBuya;Murakami, Satoshi
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.2
    • /
    • pp.15-26
    • /
    • 2004
  • Based on an estimating method for post-cyclic strength and stiffness with cyclic triaxial tests proposed by one of the authors, cyclic Direct Simple Shear (DSS) tests were carried out to confirm whether the method can be adapted to DSS test on fine-grained soils: silty clay, plastic silt, and non-plastic silt. Results from cyclic and post-cyclic DSS tests were interpreted by a modified method as adopted for cyclic and post-cyclic triaxial tests. In particular, influence of plasticity index for fine-grained soils and initial static shear stress (ISSS) was emphasised. Findings obtained from the present study are: (i) liquefaction strength ratio of fine-grained soils decreases with decreasing plasticity index and increasing ISSS; (ii) plasticity index and ISSS did not markedly influence relation between equivalent cyclic stiffness and shear strain relations; (iii) the higher the plasticity index of fine-grained soils is, the less the strength ratio decreases with increment of a normalcies excess pore water pressure (NEPWP); (iv) stiffness ratio of plastic silt has large activity decrease rapidly with increasing excess pore water pressure; and (v) post-cyclic strength and stiffness results from DSS tests agree well with those predicted by the method modified from a procedure used for triaxial test results.

Prediction of Three -Dimensional Behavior of Sand by Isotropic Single Hardening Constitutive Model (등방단일경화구성모델에 의한 모래의 3차원거동 예측)

  • 홍원표;남정만
    • Geotechnical Engineering
    • /
    • v.10 no.1
    • /
    • pp.103-118
    • /
    • 1994
  • A series of drained triaxial testis was performed on a Band by use of cubical triaxial apparatus, in which three principal stresses could be applied independently. The stress -strain behavior on the same stress path with cubical triaxial test was analyzed with application of the isotropic single hardening constitutive model presented by Lade. The behavior predicted by the constitutive model presented good coincidence with experimental results during poi mary loading. However, the predicted Mo윤ding and reloading behavior wan much different from results of cubical triaxial testy. That is, the softening part of the prediction might result in a rough approximation, since the plastic work parameters of single hardening model were based on the hardening portion of the data.

  • PDF

The Critical Repeated Stress and Behavior of the Isotropic Normally Consolidated Clays Subjected to Repeated Loads. (반복하중을 받는 등방정친압밀점토의 거동 및 한계반복응력)

  • 김팔규;송전섭
    • Geotechnical Engineering
    • /
    • v.4 no.3
    • /
    • pp.43-52
    • /
    • 1988
  • The behavior of clays subjected to Repeated loading has been shown to be very different from the behavior under a single load application. Especially the behavior of pore water pressure is Qf considerable importance. The objective of this work is to experimentally study the stress-strain characteristics of clays, and this study includes the pore water pressure which is built up during the load repetition. For this study, the samples were consolidated isotropically in the triaxial cell during 24 hours, .and monotonic strain controlled triaxial test is carried out by uslng the tests of Compression failure, Cycled at failure, and Nonfailure equilibrium on remoulded samples under undrained .condition . Consequently there exists a critical level of repeated loading which seperates the behavior of a particular sample into two distinctly different patterns.

  • PDF

Evaluation of Permanent Deformation Characteristics in Crushed Subbase Materials Using Shear Stress Ratio and Large Repeated Triaxial Compression Test (대형반복삼축시험과 전단응력비 개념을 이용한 쇄석 보조기층의 영구변형 특성평가)

  • Lim, Yu-Jin;Kim, In-Tae;Kwak, Ki-Heon
    • International Journal of Highway Engineering
    • /
    • v.13 no.4
    • /
    • pp.41-50
    • /
    • 2011
  • It is well-known that pavement is easily damaged by several factors including permanent deformation and fatigue crack, causing service life of the pavement to be shorter than expected. It is very important to predict amount of permanent deformation for designing pavement and developing design method of pavement. A new model of permanent deformation of pavement materials based on concept of shear stress ratio has been proposed because the lower pavement materials are highly affected by shear strength of the material. In this study a large repetitive triaxial load test has been adapted for performing test of permanent deformation of crushed subbase materials. The test procedure which includes concept of shear stress ratio has been newly developed. Several important model parameters can be obtained from the test that can be used for making correct permanent deformation model of the material.

The Stress-Strain Behavior of a Pure Silt Compared with Sand and Clay (사질토 및 점성토와 비교한 순수 실트의 응력 -변형률 거동)

  • 정상섬
    • Geotechnical Engineering
    • /
    • v.9 no.4
    • /
    • pp.27-36
    • /
    • 1993
  • The drained and undrained behavior of pure silt was investigated experimentally. Special attention was given to the stress-strain behavior of silt prior to failure and behavior at failure under monotonic and cyclic loading. A pure silica flour was chosen to form samples with two different densities of D,=80%, eo=0.68 and D,=35%, eo=0.9. The isotropically consolidated samples were tested in the triaxial testing device under monotonic undrained, drained compression and extension conditions. Also samples were tested under cyclic undrained condition. Based on the experimental results. it was qualitively identified that the overall behavior of silt is similar to that of sand. When compared with clay, silt shows a significantly different behavior due to its dilatant nature under both the monotonic and cyclic shear loadings.

  • PDF

Test method for Young's Modulus of Parallel Graded Coarse Granular Materials by Large Triaxial Test (대형삼축압축시험을 이용한 상사입도 조정 재료의 탄성계수 산정시험)

  • Lee, Sung Jin;Choo, Yun Wook;Hwang, Su Beom;Kim, Ki Jae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.5C
    • /
    • pp.211-220
    • /
    • 2012
  • Coarse granular materials such as gravel, rubble is used as major fill materials in earth structures of railway, road and dam. Therefore, it is essential to accurately evaluate properties of these materials for reasonable design and construction. In the precedent study, we built large triaxial testing system and verified system compliance with a focus on the dynamic properties. And we could secured the reliability of the system. In this study, the cyclic triaxial tests were performed in various experimental conditions on coarse granular material. Two series of parallel graded samples are prepared by mixing crushed rock. The influence of grain size, loading pattern, loading frequency, and fine contents were analyzed and discussed.

Development of Permanent Deformation Prediction Model for Trackbed Foundation Materials based on Shear Strength Parameters (강화노반 쇄석재료의 전단강도특성을 고려한 영구변형예측모델 개발)

  • Lim, Yujin;Hwang, Jungkyu;Cho, Hojin
    • Journal of the Korean Society for Railway
    • /
    • v.15 no.6
    • /
    • pp.623-630
    • /
    • 2012
  • Formation used as trackbed foundation for providing vertical bearing capacity onto rail foundation are composed of crushed stones usually with certain type of grain size distribution. Permanent deformation in trackbed foundation can be generated by increasing number of load repetition due to train traffic increases, causing track irregularity. In this study, a specially prepared trackbed foundation materials (M-40) used in Korea has been tested using a large repetitive triaxial compression apparatus in order to understand resilient and permanent deformation characteristics of the material. From these test results, resilient and permanent deformation characteristic are analyzed so that a permanent deformation model is developed which can consider number of load repetition N, confining stress (${\sigma}_3$), shear stress ratio(${\tau}/{\tau}_f$) and stiffness of the material.