• Title/Summary/Keyword: 박테리아 흡착

Search Result 36, Processing Time 0.024 seconds

Adsorption Technology for Bacteria-Based Concrete Coating (박테리아 기반 콘크리트 코팅재 개발을 위한 박테리아 흡착기술 연구)

  • Jeong, Jae-Eun;Yang, Keun-Hyeok;Yoon, Hyun-Sub
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.3 no.2
    • /
    • pp.140-145
    • /
    • 2015
  • This study focused on the development of a fundamental technology for coating of concrete surface using slime produced from bacteria. To assign self-purification ability and improve durability performance of concrete, Rhodobater capsulatus that generates slime were selected and absorption technology for the selected bacteria was then examined. From the production of slime and growth activity of the bacteria, the optimum medium for Rhodobater capsulatus can be recommended as maltose. Furthermore, image analysis showed that high porous resin powder is more effective for absorption of the Rhodobater capsulatus than the other materials tested.

Adsorption Characteristics of Organic Compounds on the Activated Carbon Fiber(II) (섬유상활성탄(纖維狀活性炭)에 의한 유기화합물(有機化合物)의 흡착특성(吸着特性)(II))

  • Sohn, Jin-Eon;Lee, Si-Won
    • Elastomers and Composites
    • /
    • v.24 no.2
    • /
    • pp.105-109
    • /
    • 1989
  • Liquid phase adsorption of organic compounds solution on the activated carbon fiber was measured by chromatographic method in a packed column. Adsorption equilibrium constant Ka of dextrose solution was found to be $72.5cm^3/g$ on ACF without bacteria growth, while in the bacterial ACF packed column Ka was $87.9cm^3/g$. It is suggested that for biological ACF there is a large contribution of bacterial activity to the adsorption equilibrium constant. Axial dispersion coefficient Ez was determined to be in proportional to flow rate and Pe=dpu/Ez independent or existence or bacteria.

  • PDF

Arsenic Adsorption onto Pseudomonas aeruginosa Cell Surface (Pseudomonas aeruginosa 표면에 대한 비소의 흡착특성)

  • Lee Jong-Un;Park Hyun-Sung
    • Economic and Environmental Geology
    • /
    • v.38 no.5 s.174
    • /
    • pp.525-534
    • /
    • 2005
  • Adsorption experiments for As(V) and As(III) onto the surfaces of aerobic Pseudomonas aeruginosa, which can be readily isolated from natural media, were conducted under nutrient-absent conditions. While a small amount of As(III) was adsorbed on the bacterial cell surfaces, As(V) was not effectively removed from the solution through adsorption. The result was likely due to the electrostatic repulsion between anionic compounds of aqueous As(V) and cell surfaces of f aeruginosa. However, the bacteria forming biofilm reduced a large amount of aqueous As(V) to As(III), which indicated that microorganisms in most oligotrophic, natural geologic settings can mediate the behavior of aqueous As. Biobarriers designed to remove the various heavy metals in contaminant plume may practically lead to the enhancement of toxicity and mobility of As.

Compressive Strength and Ecological Characteristics of Mortars Using Expanded Vermiculite Absorbing Bacteria (박테리아를 흡착한 팽창질석 기반의 친생태 모르타르 개발)

  • Yoon, Hyun-Sub;Jung, Seung-Bae;Yang, Keun-Hyeok;Lee, Sang-Seob;Lee, Jae-Young
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.4 no.2
    • /
    • pp.165-171
    • /
    • 2016
  • The objective of this study is to evaluate the compressive strength development and ecological characteristics of mortars using expanded vermiculite absorbing bacteria as a fundamental investigation to develop precast eco-concrete products. For bacterial growth under the high-alkalinity and high-dried environments within hardened mortars and for creating plant growth function to mortars, Bacillus alcalophilus and Rhodoblastus acidophilus were separated and cultured. The cultured bacteria were absorbed into expanded vermiculite selected for bacteria shelter. The expanded vermiculite absorbing bacteria was then added into mortar mixture as a volumetric replacement of fine aggregate. Test results showed that the developed technology is very effective in enhancing the plant growth onto the hardened mortars and reducing the COD and T-N concentration in raw water. The optimum replacement level of expanded vermiculite absorbing bacteria can be recommended to be less than 10% considering the compressive strength development and cost of mortars along with the ecological effectiveness.

항균성 활성화 탄소의 제조 및 특성

  • 오원춘;임창성;오근호;김종규;김명건;고영신
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1997.10a
    • /
    • pp.99-103
    • /
    • 1997
  • 활성탄의 특성을 이용하여 상업적으로 문제시되고 있는 수질 및 공기 정화용 항균성 Ag-활성탄을 제조하여 흡착특성, 표면구조 및 박테리아 저항성에 대하여 조사하였다. 높은 비표면적을 가진 활성탄에 대하여 AgNO$_3$를 사용하여 Ag-활성탄을 제조하였다. 0.1에서 1.0까지의 AgNO$_3$ 몰농도에 침적된 Ag-활성탄의 비표면적 값은 874-1475 $m^2$/g의 범위에 분포하고 있었으며, AgNO$_3$몰농도가 증가함에 따라 비표면적이 작아지는 경향을 나타내어 흡착된 Ag가 원료 활성탄의 표면구조에 영향을 주었다. Ag는 활성탄 표면의 기공 주위에 고르게 분포되었으며 활성탄의 표면에 물리적 흡착에 의해 존재하는 것으로 나타났다. 항균실험을 위하여 박테리아로서 대장균의 일종인 Escherichia coli를 사용하였으며, 흡착된 Ag의 양이 증가됨에 따라 활성의 범위가 증가되었고, Ag가 흡착되지 않은 활성탄의 경우에 있어서는 활성을 전혀 나타내지 않았다.

  • PDF

Development of Eco-Block for Grass Growth based on Expanded Vermiculite Absorbing Bacteria (박테리아 흡착 팽창질석 기반 친생태 잔디블록의 개발)

  • Yoon, Hyun-Sub;Jung, Seung-Bae;Yang, Keun-Hyeok;Lee, Sang-Seob;Lee, Jae-Yeung
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.4 no.3
    • /
    • pp.316-321
    • /
    • 2016
  • This study developed an eco-block for grass growth using the expanded vermiculites that absorb bacteria selected considering for the high pH and dry environments and plant growth. For the developed eco-block, a fundamental properties including compressive strength gain and water absorption and ecology characteristics were tested. The selected bacteria was Bacillus alcalophilus a nd Rhodoblastus acidophilus and had high concentration of $10^9cell/mL$. The expanded vermiculite that was used for shelter of bacteria was added by 7.5% and 10% replacement of the natural aggregates by volume. The developed eco-block achieved the minimum requirements specified in SPS provision and significantly effective in reducing chemical Chemical Oxygen Demand(COD) concentration and enhancing the growth of fish and plant.

Removal Characteristics of Geosmin and MIB in BAC Process : Biodegradation and Adsorption (생물활성탄 공정에서 Geosmin과 MIB의 제거 특성 : 생물분해와 흡착)

  • Son, Hee-Jong;Lee, Jeong-Kyu;Kim, Sang-Goo;Park, Hong-Ki;Jung, Eun-Young
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.39 no.6
    • /
    • pp.318-324
    • /
    • 2017
  • We evaluated geosmin and MIB biodegradation and adsorption mechanism of biological activated carbon (BAC) and anthracite biofilter. In steady state of BAC process, the geosmin and MIB were completely removed at the 30 min empty bed contact time (EBCT) even though low water temperature ($9^{\circ}C$) in which the activity of attached bacteria decreased. When the water temperature was $26^{\circ}C$, the microbial biomass and activity were higher at the upper layer of the biofilm than at $9^{\circ}C$, and the microbial biomass and activity decreased as the depth was deeper. This is because when the water temperature is high, the biodegradable organic matter (BOM) removal rate in the upper layer is high and the BOM amount that can't be supplied to the lower layer. The Removal rate of geosmin and MIB by BAC process did not show a significant difference compare to activity-inhibited BAC by treated with azide and the biofilter also removed the geosmin and MIB by biological action. It means geosmin and MIB could be removed by competitive relationship between adsorption and biodegradation.

Influence of Bacterial Attachment on Arsenic Bioleaching from Mine Tailings: Dependency on the Ratio of Bacteria-Solid Substrate (광물찌꺼기 내 비소의 미생물 침출 시 박테리아 흡착 영향: 박테리아와 고체 기질 비율에 관한 연구)

  • Park, Jeonghyun;Silva, Rene A.;Choi, Sowon;Ilyas, Sadia;Kim, Hyunjung
    • Resources Recycling
    • /
    • v.30 no.3
    • /
    • pp.30-40
    • /
    • 2021
  • The present study investigates the bioleaching efficiencies of arsenic via contact and non-contact mechanisms. The attachment of Acidithiobacillus ferrooxidans was restricted by a partition system comprising a semi-permeable membrane with a molecular weight cutoff of 12-14 kDa. The results were compared for two arsenic concentrations in the system (1.0% and 0.5% w/v) to maintain a homogeneous system. The overall bacterial performance was monitored by comparing total arsenic and iron concentrations, Fe ion speciation, pH, and solution redox potentials in flask bioleaching experiments over a period of 10 d. Our results indicated that bacterial attachment could increase arsenic extraction efficiency from 20.0% to 44.9% at 1.0 % solid concentrations. These findings suggest that the bacterial contact mechanism greatly influences arsenic bioleaching from mine tailings. Therefore, systems involving two-step or non-contact bioleaching are less effective than those involving one-step or contact bioleaching for the efficient extraction of arsenic from mine tailings.

Adhesion of Escherichia coli to Quartz and Iron-coated Sands in the Presence of Phosphate (인산염의 존재 하에서 Escherichia coli의 석영 및 철피복 모래에의 부착)

  • Park, Seong-Jik;Lee, Chang-Gu;Kim, Hyon-Chong;Han, Yong-Un;Kim, Song-Bae
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.6
    • /
    • pp.616-620
    • /
    • 2008
  • The aim of this study was to investigate the influence of phosphate on the adhesion of Escherichia coli to porous media. Column experiments were performed to examine the effect of phosphate on bacterial adhesion to quartz sand and iron-coated sand. Results showed that bacterial mass recovery in quartz sand decreased from 74.5 to 35.4% as phosphate concentration increased from 0 to 16 mg/L. This indicated that bacterial adhesion to quartz sand was enhanced with increasing phosphate concentration. This phenomenon is due to the increase of ionic strength. In contrast, the mass recovery in the coated sand increased from 2.9 to 26.0% as phosphate concentration increased. This indicated that bacterial adhesion to the coated sand was reduced with increasing phosphate concentration, due to the preoccupation of favorable adsorption sites and competitive adsorption by phosphate.

Adsorption and Redox State Alteration of Arsenic, Chromium and Uranium by Bacterial Extracellular Polymeric Substances (EPS) (박테리아 세포외 중합체(EPS)에 의한 비소, 크롬, 우라늄의 흡착 및 산화상태 변화)

  • Park, Hyun-Sung;Ko, Myoung-Soo;Lee, Jong-Un
    • Economic and Environmental Geology
    • /
    • v.43 no.3
    • /
    • pp.223-233
    • /
    • 2010
  • The effects of extracellular polymeric substances (EPS) of Pseudomonas aeruginosa on adsorption and redox state alteration of dissolved As, Cr and U were investigated through batch experiments. Surfaces of bacterial cells were either vigorously washed or unwashed. Solutions of As(V), Cr(VI) and U(VI) were inoculated with the bacterial cells under no nutrient condition, and total aqueous concentrations and redox state alteration were monitored over time. No As adsorption occurred onto bacteria or EPS; however, unwashed bacteria reduced about 60% As(V) to As(III). Unwashed bacteria also led to removal of 45% total dissolved Cr and reduction of 64% Cr(VI). About 80% U(VI) was removed from solution with unwashed bacteria as well. Such electrochemical reduction of the elements was likely due to reducing capacity of EPS itself or detoxifying reduction of the bacteria which kept their viability under protection of EPS. The results indicated that bacterial biofilm may significantly control the redox state and subsequent mobility of As, Cr and U in natural geologic settings.