Adsorption and Redox State Alteration of Arsenic, Chromium and Uranium by Bacterial Extracellular Polymeric Substances (EPS)

박테리아 세포외 중합체(EPS)에 의한 비소, 크롬, 우라늄의 흡착 및 산화상태 변화

  • Park, Hyun-Sung (R&D Team, Mine Reclamation Corporation) ;
  • Ko, Myoung-Soo (Department of Environmental Science and Engineering, Gwangju Institute of Science and Technology(GIST)) ;
  • Lee, Jong-Un (Department of Energy and Resources Engineering, Chonnam National University)
  • 박현성 (한국광해관리공단 광해기술연구소) ;
  • 고명수 (광주과학기술원 환경공학과) ;
  • 이종운 (전남대학교 에너지자원공학과)
  • Received : 2010.05.03
  • Accepted : 2010.06.16
  • Published : 2010.06.28

Abstract

The effects of extracellular polymeric substances (EPS) of Pseudomonas aeruginosa on adsorption and redox state alteration of dissolved As, Cr and U were investigated through batch experiments. Surfaces of bacterial cells were either vigorously washed or unwashed. Solutions of As(V), Cr(VI) and U(VI) were inoculated with the bacterial cells under no nutrient condition, and total aqueous concentrations and redox state alteration were monitored over time. No As adsorption occurred onto bacteria or EPS; however, unwashed bacteria reduced about 60% As(V) to As(III). Unwashed bacteria also led to removal of 45% total dissolved Cr and reduction of 64% Cr(VI). About 80% U(VI) was removed from solution with unwashed bacteria as well. Such electrochemical reduction of the elements was likely due to reducing capacity of EPS itself or detoxifying reduction of the bacteria which kept their viability under protection of EPS. The results indicated that bacterial biofilm may significantly control the redox state and subsequent mobility of As, Cr and U in natural geologic settings.

세포외 중합체(EPS)의 존재 유무에 따라 Pseudomonas aeruginosa가 용존 비소, 크롬, 우라늄의 흡착 및 산화상태의 변화에 미치는 영향을 회분식 실험을 통해 조사하였다. 배양한 미생물의 표면을 세척한 것과 세척하지 않은 것으로 구분하여 무영양 상태에서 1.1 mg/L의 As(V)와 Cr(VI), 0.5 mg/L의 U(VI)와 반응시키며 시간에 따라 각각의 총 용존 함량과 산화상태 변화를 측정하였다. As(V)의 경우 EPS 존재 여부와 관계없이 흡착은 발생하지 않았으나 EPS가 보존된 박테리아는 As(V)의 약 60%를 As(III)로 환원하였다. 표면을 세척하지 않은 박테리아는 총 용존 크롬의 45%를 제거하였으며 잔류된 용존 크롬의 64%를 Cr(III)로 환원하였다. 우라늄의 경우, 박테리아 표면을 세척하지 않았을 때 U(VI)의 약 80% 이상이 용액으로부터 제거되었다. 이러한 원소 환원은 박테리아가 분비한 EPS 자체의 환원 능력 또는 EPS로부터 보호받아 생육성이 보존된 박테리아의 해독성 환원에 의한 것으로 여겨진다. 이 연구 결과는 자연 환경에서 대부분 바이오필름 상태로 존재하는 미생물이 비소, 크롬, 우라늄의 산화상태 및 이동도 조절에 지대한 영향을 미칠 수도 있음을 의미한다.

Keywords

References

  1. Akar, T. and Tunali, S. (2005) Biosorption performance of Botrytis cinerea fungal by-products for removal of Cd(II) and Cu(II) ions from aqueous solutions. Miner. Eng., v.18, p.1099-1109. https://doi.org/10.1016/j.mineng.2005.03.002
  2. Berg, M., Tran, H.C., Nguyen, T.C., Pham, H.V., Schertenleib, R. and Giger, W. (2001) Arsenic contamination of groundwater and drinking water in Vietnam: a human health threat. Environ. Sci. Technol., v.35, p.2621-2626. https://doi.org/10.1021/es010027y
  3. Beveridge, T.J. and Murray, R.G.E. (1980) Sites of metal deposition in the cell wall of Bacillus subtilis. J. Bacteriol., v.127, p.876-887.
  4. Bhattacharya, P., Claesson, M., Bundschuh, J., Sracek, O., Fagerberg, J., Jacks, G., Martin, R.A., del Storniolo, A.R. and Thir, J.M. (2006) Distribution and mobility of arsenic in the Rio Dulce alluvial aquifers in Santiago del Estero Province, Argentina. Sci. Tot. Environ., v.358, p.97-120. https://doi.org/10.1016/j.scitotenv.2005.04.048
  5. Burkel, R.S. and Stoll, R.C. (1999) Naturally occurring arsenic in sandstone aquifer water supply wells of North Eastern Wisconsin. Ground Water Monit. Remed., v.19, p.114-121. https://doi.org/10.1111/j.1745-6592.1999.tb00212.x
  6. Clesceri, L.S., Greenberg, A.E. and Eaton, A.D. (1998) Standard methods for the examination of water and wastewater, 20th ed. American Public Health Association, American Water Work Association, and Water Environment Federation, Washington, DC. p.59-126.
  7. Costerton, J.W., Lewandowski, Z., DeBeer, D., Caldwell, D., Korber, D. and James, G. (1994) Biofilms, the customized microniche. J. Bacteriol., v.176, p.2137-2142. https://doi.org/10.1128/jb.176.8.2137-2142.1994
  8. Fein, J.B., Daughney, C.J., Yee, N. and Davis, T.A. (1997) A chemical equilibrium model for metal adsorption onto bacterial surfaces. Geochim. Cosmochim. Acta, v.61, p.3319-3328. https://doi.org/10.1016/S0016-7037(97)00166-X
  9. Fein, J.B., Fowle, D.A., Cahill, J., Kemner, K., Boyanov, M. and Bunker, B. (2002) Nonmetabolic reduction of Cr(VI) by bacterial surfaces under nutrient-absent conditions. Geomicrobiol. J., v.19, p.369-382. https://doi.org/10.1080/01490450290098423
  10. Gorman-Lewis, D., Elias, P.E. and Fein, J.B. (2005) Adsorption of aqueous uranyl complexes onto Bacillus subtilis cells. Environ. Sci. Technol., v.39, p.4906-4912. https://doi.org/10.1021/es047957c
  11. Gulens, J. and Champ, D.R. (1979) Influence of redox environments on the mobility of arsenic in groundwater, In: Jenne, E.A. (ed), Chemical modelling in aqueous systems. ACS Press, Washington, DC., p.81-95.
  12. Ha, W.-K., Lee, J.-U. and Jung, M.C. (2006) Study on geomicrobiological reductive precipitation of uranium and its long-term stabilization. Econ. Environ. Geol., v.43, p.331-338. (in Korean)
  13. Hsi, C.K.D. and Langmuir, D. (1985) Adsorption of uranyl onto ferric oxyhydroxides: application of the surface complexation site-binding model. Geochim. Cosmochim. Acta, v.49, p.1931-1941. https://doi.org/10.1016/0016-7037(85)90088-2
  14. Jang, H.-Y., Chon, H.-T. and Lee, J.-U. (2009) In-situ precipitation of arsenic and copper in soil by microbiological sulfate reduction. Econ. Environ. Geol., v.42, p.445-455. (in Korean)
  15. Kang, S.-Y., Lee, J.-U. and Kim, K.-W. (2007) Biosorption of Cr(III) and Cr(VI) onto the cell surface of Pseudomonas aeruginosa. Biochem. Eng. J., v.36, p.54-58. https://doi.org/10.1016/j.bej.2006.06.005
  16. Kim, S.-H., Chon, H.-T. and Lee, J.-U. (2009) Removal of dissolved heavy metals through biosorption onto indigenous bacterial biofilm developed in soil. Econ. Environ. Geol., v.42, p.435-444. (in Korean)
  17. Kiran, I., Akar, T. and Tunali, S. (2005) Biosorption of Pb(II) and Cu(II) from aqueous solutions by pretreated biomass of Neurospora crassa. Process Biochem., v.40, p.3550-3558. https://doi.org/10.1016/j.procbio.2005.03.051
  18. Klimmek, S., Stan, H.-J., Wilke, A., Bunke, G., and Buchholz, R. (2001) Comparative analysis of the biosorption of cadmium, lead, nickel, and zinc by algae. Environ. Sci. Technol., v.35, p.4283-4288. https://doi.org/10.1021/es010063x
  19. Ko, M.-S., Lee, J.-U., Park, H.-S., Shin, J.-S., Bang, K.-M., Chon, H.-T., Lee, J.-S., and Kim, J.-Y. (2009) Geomicrobiological behavior of heavy metals in paddy soil near abandoned Au-Ag mine supplied with carbon sources. Econ. Environ. Geol., v.42, p.413-426. (in Korean)
  20. Ko, M.-S., Park, H.-S., Kim, K.-W. and Lee, J.-U. (2010) Experimental study on stabilization of heavy metals by biofilm developed on soil particle surface. J. Korean Soc. Geosys. Eng., v.47, in print. (in Korean)
  21. Konhauser, K. (2007) Introduction to geomicrobiology. Blackwell, MA, USA, 425p.
  22. LBNL (2003) Bioremediation of metals and radionuclides, 2nd ed. Lawrence Berkeley National Laboratory, LBNL-42595, 78p.
  23. Lee, J.-U. and Beveridge, T.J. (2001) Interaction between iron and Pseudomonas aeruginosa biofilms attached to Sepharose surfaces. Chem. Geol., v.180, p.67-80. https://doi.org/10.1016/S0009-2541(01)00306-0
  24. Lee, J.-U., Lee, S.-W. and Kim, K.-W. (2001) Microbial effects on geochemical behavior of arsenic under aerobic condition and their applicability to environmental remediation. Econ. Environ. Geol., v.34, p.345-354. (in Korean)
  25. Lee. J.-U. and Park, H.-S. (2005) Arsenic adsorption onto Pseudomonas aeruginosa cell surfaces. Econ. Environ. Geol., v.38, p.525-534.
  26. Lee, J.-U., Lee, S.-W., Kim, K.-W. and Yoon, C.-H. (2005) The effects of different carbon sources on microbial mediation of arsenic in arsenic-contaminated sediment. Environ. Geochem. Health, v.27, p.159-168. https://doi.org/10.1007/s10653-005-0133-4
  27. Lee, S.E., Lee, J.-U., Lee, J.S. and Chon, H.T. (2006(a)) Effects of indigenous bacteria on Cr(VI) reduction in Cr-contaminated sediment with industrial wastes. J. Geochem. Explor., v.88, p.41-44. https://doi.org/10.1016/j.gexplo.2005.08.013
  28. Lee, J.-U., Lee, S.-W., Kim, K.-W., Lee, J.-S. and Chon, H.-T. (2006(b)) Geomicrobiological effects on arsenic behavior in anaerobic sediment from abandoned gold mine area. J. Korean Soc. Geosys. Eng., v.43, p.448-457. (in Korean)
  29. Lee, S.E., Lee, J.-U., Chon, H.T. and Lee, J.S. (2008(a)) Reduction of Cr(VI) by indigenous bacteria in Cr-contaminated sediment under aerobic condition. J. Geochem. Explor., v.96, p.144-147. https://doi.org/10.1016/j.gexplo.2007.04.005
  30. Lee, S.-E., Lee, J.-U., Chon, H.-T. and Lee, J.-S. (2008(b)) Microbiological reduction of hexavalent chromium by indigenous chromium-resistant bacteria in sand column experiments. Environ. Geochem. Health, v.30, p.141-145. https://doi.org/10.1007/s10653-008-9132-6
  31. Lee, J.-U., Lee, S.-W., Chon, H.-T., Kim, K.-W. and Lee, J.-S. (2009) Enhancement of arsenic mobility by indigenous bacteria from mine tailings as response to organic supply. Environ. Int., v.35, p.496-501. https://doi.org/10.1016/j.envint.2008.07.017
  32. McLean, J. and Beveridge, T.J. (2001) Chromate reduction by a Pseudomonad isolated from a site contaminated contaminated with chromated copper arsenate. Appl. Environ. Microbiol., v.67, p.1076-1084. https://doi.org/10.1128/AEM.67.3.1076-1084.2001
  33. Messens, J. and Silver, S. (2006) Arsenate reduction: thiol cascade chemistry with convergent evolution. J. Mol. Biol., v.362, p.1-17. https://doi.org/10.1016/j.jmb.2006.07.002
  34. Nickson, R.T., McArthur, J.M., Ravenscroft, P., Burgess, W.G. and Ahmed, K.M. (2000) Mechanism of arsenic release to groundwater, Bangladesh and West Bengal. Appl. Geochem., v.15, p.403-413. https://doi.org/10.1016/S0883-2927(99)00086-4
  35. Oremland, R.S. and Stolz, J.F. (2003) The ecology of arsenic. Science, v.300, p.939-944. https://doi.org/10.1126/science.1081903
  36. Park, J.M., Lee, J.S., Lee, J.-U., Chon, H.T. and Jung, M.C. (2006) Microbial effects on geochemical behavior of arsenic in As-contaminated sediments. J. Geochem. Explor., v.88, p.134-138. https://doi.org/10.1016/j.gexplo.2005.08.026
  37. Riley, R.G., Zachara, J.M. and Wobber, F.J. (1992) Chemical contaminants on DOE lands and selection of contaminant mixtures for subsurface science research. Department of Energy, DOE/ER-0547T, US DOE, Washington, DC.
  38. Silver, S. (1996) Bacterial resistances to toxic metal ions- a review. Gene, v.179, p.9-19. https://doi.org/10.1016/S0378-1119(96)00323-X
  39. Smedley, P.L. (2003) Arsenic in groundwater - south and east Asia, In: Welch, A.H. and Stollenwerk, K.G. (eds.), Arsenic in groundwater - geochemistry and occurrence. Kluwer, Boston, p.179-209.
  40. Smedley, P.L. and Kinniburgh, D.G. (2002) A review of the source, behavior, and distribution of arsenic in natural waters. Appl. Geochem., v.17, p.517-568. https://doi.org/10.1016/S0883-2927(02)00018-5
  41. Smedley, P.L., Nicolli, H.B., Macdonald, D.M. Barros, A.J. and Tullio, J.O. (2002) Hydrogeochemistry of arsenic and other inorganic constituents in groundwaters from La Pampa, Argentina. Appl. Geochem., v.17, p.259-284. https://doi.org/10.1016/S0883-2927(01)00082-8
  42. US EPA (1998) Toxicological review of hexavalent chromium. US EPA, Washington, DC.
  43. US EPA (2000) Arsenic treatment technology evaluation handbook for small system. EPA 816-R-03-014. US EPA, Washington, DC.
  44. Vecchio, A., Finoli, C., Di Simine, D. and Andreoni, V. (1998) Heavy metal biosorption by bacterial cells. Fresenius J. Anal. Chem., v.361, p.338-342. https://doi.org/10.1007/s002160050899
  45. Wang, Y.T. and Shen, H. (1995) Bacterial reduction of hexavalent chromium. J. Ind. Microbiol. Biotechnol., v.14, p.159-163.
  46. Williams, J.W. and Silver, S. (1984) Bacterial resistance and detoxification of heavy metals. Enz. Microb. Technol., v.6, p.530-537. https://doi.org/10.1016/0141-0229(84)90081-4
  47. Yassi, A. and Niebor, E. (1988) Carcinogenicity of chromium compounds, In: Nriagu, J.O. and Nieboer, E. (eds.), Chromium in the natural and human environments. John Wiley and Sons, NY, p.514-530.