Arsenic Adsorption onto Pseudomonas aeruginosa Cell Surface

Pseudomonas aeruginosa 표면에 대한 비소의 흡착특성

  • Lee Jong-Un (Microbial Geochemistry Lab.(MIGEL), Department of Geosystem Engineering, Chonnam National University) ;
  • Park Hyun-Sung (Microbial Geochemistry Lab.(MIGEL), Department of Geosystem Engineering, Chonnam National University)
  • 이종운 (전남대학교 지구시스템공학과 미생물지구화학연구실) ;
  • 박현성 (전남대학교 지구시스템공학과 미생물지구화학연구실)
  • Published : 2005.12.01

Abstract

Adsorption experiments for As(V) and As(III) onto the surfaces of aerobic Pseudomonas aeruginosa, which can be readily isolated from natural media, were conducted under nutrient-absent conditions. While a small amount of As(III) was adsorbed on the bacterial cell surfaces, As(V) was not effectively removed from the solution through adsorption. The result was likely due to the electrostatic repulsion between anionic compounds of aqueous As(V) and cell surfaces of f aeruginosa. However, the bacteria forming biofilm reduced a large amount of aqueous As(V) to As(III), which indicated that microorganisms in most oligotrophic, natural geologic settings can mediate the behavior of aqueous As. Biobarriers designed to remove the various heavy metals in contaminant plume may practically lead to the enhancement of toxicity and mobility of As.

지질매체에서 흔하게 발견되는 호기성 박테리아인 Pseudomonas aeuginosa에 대하여 영양분을 공급하지 않은 상태에서 As(V) 및 As(III) 흡착실험을 수행하였다. As(111)의 경우 P. aeruginosa에 의한 소규모의 흡착이 관찰된 반면, As(V)는 효과적인 흡착이 적용되지 않음을 확인할 수 있었다 이는 As(V)는 수용액 상태에서 음전하 화합물로 존재하고 박테리아 표면 역시 음전하를 띠고 있기 때문에 상호 인력이 작용하지 않기 때문인 것으로 파악된다. 그러나 바이오필름 상태의 박테리아는 많은 양의 용존 As(V)를 As(III)로 환원하는 것으로 나타났다. 이는 빈영양 환경인 대부분의 지질환경에서도 미생물이 용존 비소의 거동에 미치는 영향이 크다는 것을 의미한다. 다양한 중금속으로 오염된 지하수를 처리하기 위하여 구축된 미생물 반응벽체는 비소의 흡착을 촉진하기보다는 오히려 비소의 독성과 이동도를 증가시키는 부의 효과를 유도할 수도 있다.

Keywords

References

  1. 민정식, 정양욱, 이현주, 이동남 (1997) 광산지역 광해조사와 대책연구. 자원연구소 연구보고서. KR-97 (C)-32, 자원연구소, 479p
  2. 이종운, 전효택 (2000) 원소의 지구화학적 거동에 미치는 박테리아의 영향: 지구미생물학의 최근 연구 동향. 자원환경지질, 33권, p. 353-365
  3. 이지민, 하원경, 전효택, 이종운 (2005) 비소로 오염된 토양 및 퇴적물에서의 미생물학적 비소산화 연구. 한국지구시스템공학회 2005년도 춘계학술발표회 (제84회)논문집, p. 57-62
  4. Ahmann, D., Roberts, A.L., JCrumholz, L.R. and Morel, F.M.M. (1994) Microbe grows by reducing arsenic. Nature, v. 371, 750p https://doi.org/10.1038/371750a0
  5. Ahmann, D., Krumholz, L.R., Hemond, H.F., Lovley, D.R. and Morel, F.M.M. (1997) Microbial mobilization of arsenic from sediments of the Aberjona Watershed. Environ. Sci. Technol., v. 31, p. 2923-2930 https://doi.org/10.1021/es970124k
  6. Ayotte, J.D., Montgomery, D.L., Flanagan, S.M. and Robinson, K.W. (2003) Arsenic in groundwater in eastern New England: occurrence, controls, and human health implications. Environ. Sci. Technol., v. 37, p. 2075-2083 https://doi.org/10.1021/es026211g
  7. Berg, M., Tran, H.C., Nguyen, T.C., Pham, H.V, Scherten-leib, R. and Giger, W (2001) Arsenic contamination of groundwater and drinking water in Vietnam: a human health threat. Environ. Sci. Technol., v. 35, p. 2621-2626 https://doi.org/10.1021/es010027y
  8. Beveridge, T.J. and Murray, R.G.E. (1980) Sites of metal deposition in the cell wall of Bacillus subtilis. J. Bacterid., v. 127, p. 876-887
  9. Bexfield, L.M. and Plummer, L.N. (2003) Occurrence of arsenic in ground water of the Middle Rio Grande Basin, central New Mexico. In Welch, A.H. and Stol-lenwerk, K.G. (eds.) Arsenic in ground water -geochemistry and occurrence. Kluwer, Boston, p. 295-327
  10. Bhumbla, D.K. and Keefer, R.F. (1994) Arsenic mobilization and bioavailability in soils. In Nriagu, J.O. (ed.) Arsenic in the environment. Wiley, New York, p. 51-82
  11. Chowdhury, T.R., Basu, G.K., Mandal, B.K., Biswas, B.K., Samanta, G., Chowdhury, U.K., Chanda, C.R., Lodh, D., Roy, S.L., Saha, K.C., Roy, S., Kabir, S., Qua-mruzzaman, Q. and Chakraborti, D. (1999) Arsenic poisoning in the Ganges delta. Nature, v. 401, p. 545-546 https://doi.org/10.1038/44052
  12. Costerton, J.W., Lewandowski, Z., DeBeer, D., Caldwell, D., Korber, D. and James, G. (1994) Biofilms, the customized microniche. J. Bacterid., v. 176, p. 2137-2142 https://doi.org/10.1128/jb.176.8.2137-2142.1994
  13. Das, D., Samanta, G., Mandal, B.K., Chowdhury, T.R., Chanda, C.R., Chowdhury, P.P., Basu, G.K. and Chakraborti, D. (1996) Arsenic in groundwater in six districts of West Bengal, India. Environ. Geochem. Hlth., v. 18, p. 5-16 https://doi.org/10.1007/BF01757214
  14. Fein, J.B., Daughney, C.J., Yee, N. and Davis, T.A. (1997) A chemical equilibrium model for metal adsorption onto bacterial surfaces. Geochim. Cosmochim. Acta, v. 61, p. 3319-3328 https://doi.org/10.1016/S0016-7037(97)00166-X
  15. Fein, J.B., Fowle, D.A., Cahill, J., Kemner, K., Boyanov, M. and Bunker, B. (2002) Nonmetabdic reduction of Cr(VI) by bacterial surfaces under nutrient-absent conditions. Geomicrobiol. J., v. 19, p. 369-382 https://doi.org/10.1080/01490450290098423
  16. Gihring, T.M., Druschel, G.K., McCleskey, R.B., Hamers, R.J. and Banfield, J.F. (2001) Rapid arsenite oxidation by Thermus aquaticus and Thermits thermophilics: field and laboratory investigations. Environ. Sci. Technol., v. 35, p. 3857-3862 https://doi.org/10.1021/es010816f
  17. Gulens, J. and Champ, D.R. (1979) Influence of redox environments on the mobility of arsenic in groundwater. In Jenne E.A. (ed). Chemical modelling in aqueous systems. ACS Press, Washington, DC, p. 81-95
  18. Rang, S.-Y, Lee, J.-U. and Kim, K.-W. (2005) A study of the biosorption characteristics of $Co^{2+}$ in wastewater using Pseudomonas aeruginosa. Key Eng. Mater., v. 277-279, p. 418-423 https://doi.org/10.4028/www.scientific.net/KEM.277-279.418
  19. Klimmek, S., Stan, H.-J., Wilke, A., Bunke, G. and Buch-holz, R. (2001) Comparative analysis of the biosorption of cadmium, lead, nickel, and zinc by algae. Environ. Sci. Technol., v. 35, p. 4283-428 https://doi.org/10.1021/es010063x
  20. Kolker, A., Haack, S.K., Cannon, W.E, Westjohn, D.B., Kim, M.-J., Nriagu, J. and Woodruff, L.G. (2003) Arsenic in southeastern Michigan. In Welch, A.H. and Stollenwerk, K.G. (eds.) Arsenic in ground water -geochemistry and occurrence. Kluwer, Boston, p. 281-294
  21. Lee, J.-U. and Fein, J.B. (2000) Experimental study of the effects of Bacillus subtilis on gibbsite dissolution rates under near-neutral pH and nutrient-poor conditions. Chem. Geol., v. 166, p. 193-202 https://doi.org/10.1016/S0009-2541(99)00191-6
  22. Lee, J.-U. and Beveridge, T.J. (2001) Interaction between iron and Pseudomonas aeruginosa biofilms attached to Sepharose surfaces. Chem. Geol, v. 180, p. 67-80 https://doi.org/10.1016/S0009-2541(01)00306-0
  23. Lee, J.-U., Lee, S.-W. and Kim, K.-W. (2002) Bioleaching of arsenic from mine tailing using indigenous microorganisms. In Proceedings of Environmental Biotechnology 2002, New Zealand, p. 355-362
  24. Lee, J.-U., Lee, S.-W. and Kim, K.-W. (2004) The effects of indigenous bacteria on arsenic geochemistry in an abandoned gold mine sediment. In Abstracts from the 32nd International Geological Congress. Italy, p. 455
  25. Lee, J.-U., Lee, S.-W, Kim, K.-W. and Yoon, C.-H. (2005) The effects of different carbon sources on microbial mediation of arsenic in arsenic-contaminated sediment. Environ. Geochem. Hlth., v. 27, p. 159-168 https://doi.org/10.1007/s10653-005-0133-4
  26. Macy, J.M., Nunan, K., Hagen, K.D., Dixon, D.R., Harbour, P.J., Cahill, M. and Sly, L.I. (1996) Chrysiogenes arsenatis gen. nov., sp. nov., a new arsenate-respiring bacterium isolated from gold mine wastewater. Int. J. Sys. Bacterid., v. 46, p. 1153-1157 https://doi.org/10.1099/00207713-46-4-1153
  27. McLean, J.S., Lee, J.-U. and Beveridge, T.J. (2002) Interactions of bacteria and environmental metals, finegrained mineral development, and bioremediation strategies. In Huang, RM., Bollag, J.-M. and Senesi, N. (eds.) Interactions between soil particles and microorganisms: impact on the terrestrial ecosystem. John Wiley and Sons, England, p. 227-261
  28. Moore, J.N. and Woessner, W.W. (2003) Arsenic contamination in the water supply of Milltown, Montana. In Welch, A.H. and Stollenwerk, K.G. (eds.) Arsenic in ground water - geochemistry and occurrence. Kluwer, Boston, p. 329-350
  29. Newman, D.K., Kennedy, E.K., Coates, J.D., Ahmann, D., Ellis, D.J., Lovley, D.R. and Morel, F.M.M. (1997) Dis-similatory arsenate, and sulfate reduction in Desulfo-tomaculum auripigmentum sp. nov. Arch. Microbiol., v. 168, p. 380-388 https://doi.org/10.1007/s002030050512
  30. Newman, D.K, Ahmann, D.E. and Morel, F.M.M. (1998) A brief review of microbial asenate respiration. Geomicrobiol. J., v. 15, p. 255-268 https://doi.org/10.1080/01490459809378082
  31. Nickson, R., McArthur, J., Burgess, W., Ahmed, K.M., Ravenscroft, R and Rahman, M. (1998) Arsenic poisoning of Bangladesh groundwater. Nature, v. 395, p. 338 https://doi.org/10.1038/26387
  32. Oremland, R.S. and Stolz, J.F. (2003) The ecology of arsenic. Science, v. 300, p. 939-944 https://doi.org/10.1126/science.1081903
  33. Oremland, R.S., Blum, J.S., Culbertson, C.W., Visscher, P.T, Miller, L.G., Dowdle, P. and Strohmaier, F.E. (1994) Isolation, growth and metabolism of an obli-gately anaerobic, selenate-respiring bacterium, strain SES-3. Appl. Environ. Microbiol., v. 60, p. 3011-3019
  34. Park, J.M., Lee, J.S., Chon, H.T. and Lee, J.-U. (2005) Effects of indigenous bacteria on geochemical behavior of As in As-contaminated sediment. In Proceedings of the 4th Asia-Pacific Symposium on Environmental Geochemistry. Australia, p. O.19
  35. Salmassi, T.M., Venkateswaren, K., Satomi, M., Nealson, K.H., Newman, D.K. and Hering, J.G. (2002) Oxidation of arsenite by Agrobacterium albertimagni, AOL15, sp. nov., isolated from Hot Creek, California. Geomicrobiol. J., v. 19, p. 53-66 https://doi.org/10.1080/014904502317246165
  36. Santini, J.M., Sly, L.I., Schnagl, R.D. and Macy, J.M. (2000) A new chemolithoautotrophic arsenite-oxidiz-ing bacterium isolated from a gold mine: phylogenetic, physiological, and preliminary biochemical studies. Appl. Environ. Microbiol., v. 66, p. 92-97 https://doi.org/10.1128/AEM.66.1.92-97.2000
  37. Schreiber, M.E., Gotkowitz, M.B., Simo, J.A. and Freiberg, P.G. (2003) Mechanisms of arsenic release to water from naturally occurring sources, eastern Wisconsin. In Welch, A.H. and Stollenwerk, K.G. (eds.) Arsenic in ground water - geochemistry and occurrence. Kluwer, Boston, p. 259-280
  38. Smedley, P.L. (2003) Arsenic in groundwater - south and east Asia. In Welch, A.H. and Stollenwerk, K.G. (eds.) Arsenic in ground water - geochemistry and occurrence. Kluwer, Boston, p. 179-209
  39. Stollenwerk, K.G. (2003) Geochemical processes controlling transport of arsenic in groundwater: a review of adsorption. In Welch, A.H. and Stollenwerk, K.G. (eds.) Arsenic in ground water - geochemistry and occurrence. Kluwer, Boston, p. 67-100
  40. Vecchio, A., Finoli, C, Di Simine, D. and Andreoni, V. (1998) Heavy metal biosorption by bacterial cells. Fresenius J. Anal. Chem., v. 361, p. 338-342 https://doi.org/10.1007/s002160050899
  41. Watkins, L. and Costerton, J.W. (1984) Growth and bio-cide resistance of bacterial biofilms in industrial systems. Chemical Times and Trends, v. October, p. 35-40
  42. Williams, T.M., Rawlins, B.G., Smith, B. and Breward, N. (1998) In-vitro determination of arsenic bioavailability in contaminated soil and mineral beneficiation waste from Ron Phibum, southern Thiland; A basis for improved human risk assessment. Environ. Geochem. Hlth., v. 20, p. 169-178 https://doi.org/10.1023/A:1006545817478