• Title/Summary/Keyword: 바이오 나노

Search Result 540, Processing Time 0.025 seconds

Oil Extraction from Nannochloropsis oceanica Cultured in an Open Raceway Pond and Biodiesel Conversion Using SO42-/HZSM-5 (Open raceway pond에서 배양된 Nannochloropsis oceanica로부터 오일 추출 및 SO42-/HZSM-5를 이용한 바이오디젤 전환)

  • Ji-Yeon Park;Joo Chang Park;Min-Cheol Kim;Deog-Keun Kim;Hyung-Taek Kim;Hoseob Chang;Jun Cheng;Weijuan Yang
    • New & Renewable Energy
    • /
    • v.19 no.4
    • /
    • pp.27-34
    • /
    • 2023
  • In this study, microalgal oil was extracted from Nannochloropsis oceanica cultured in an open raceway pond and converted into biodiesel using a solid acid catalyst. Microalgal oil was extracted from two types of microalgae with and without nitrogen starvation using the KOH-solvent extraction method and the fatty acid content and oil extraction yield from each microalgae were compared. The fatty acid content of N. oceanica was 184.8 mg/g cell under basic conditions, and the oil content increased to 340.1 mg/g under nitrogen starvation conditions. Oil extraction yields were 90.8 and 95.4% in the first extraction, and increased to 97.5 and 98.8% after the second extraction. Microalgal oil extracted by KOH-solvent extraction was yellow in color and had reduced viscosity due to chlorophyll removal. In biodiesel conversion using the catalyst SO42-/HZSM-5, solvent-extracted oil showed a FAME content of 4.8%, while KOH-solvent-extracted oil showed a FAME content of 90.4%. Solid acid catalyst application has been made easier by removal of chlorophyll from microalgal oil. The FAME content increased to 96.6% upon distillation, and the oxidation stability increased to 11.07 h with addition of rapeseed biodiesel and 1,000 ppm butylated hydroxyanisole.

Design of Metal-Slit Fresnel Lens for Enhanced Coupling Efficiency (광 결합 및 집속도 향상을 위한 금속 슬릿 프레넬 렌즈의 설계)

  • Park, Dong-Won;Jung, Young-Jin;Koo, Suk-Mo;Yu, Sun-Kyu;Park, Nam-Kyoo;Jhon, Young-Min;Lee, Seok
    • Korean Journal of Optics and Photonics
    • /
    • v.20 no.1
    • /
    • pp.1-5
    • /
    • 2009
  • Recently, much research has been done for to realizeing nano-scale photonic circuits based on photonic crystal, plasmonics and silicon photonics in order to overcome fundamental limits of electronic circuits. These limits include such as bottleneck of speed, and size that cannot be reduced. Even though several kinds of coupling schemes have been reported, coupling structures are still large when it is compared with the nano-scale optical circuit. In this paper, we proposed using a very thin Fresnel lens while shortening the focal length of the Fresnel lens as much as possible. We proposed, for the first time, to utilize metal slits that are able to use the optical coupling system between a nano-scale optical circuit and the standard single mode optical fiber for overcoming the limitation of focal length shortening of the Fresnel lens. Comparative study has been carried out with a FDTD simulation between normal and metal slit assisted Fresnel lens. From the result of simulation, we can achieve 65% coupling efficiency for the metal-slit Fresnel lens when the focal length of metal-slit Fresnel lens is just $4{\mu}m$. On the other hand, the coupling efficiency of the normal Fresnel lens is about 43%.

Preparation of Nanostructures Using Layer-by-Layer Assembly and Applications (층상자기조립법을 이용한 나노구조체의 제조와 응용)

  • Cho, Jin-Han
    • Journal of the Korean Vacuum Society
    • /
    • v.19 no.2
    • /
    • pp.81-90
    • /
    • 2010
  • We introduce a novel and versatile approach for preparing self-assembled nanoporous multilayered films with antireflective properties. Protonated polystyrene-block-poly (4-vinylpyrine) (PS-b-P4VP) and anionic polystyrene-block-poly (acrylic acid) (PS-b-PAA) block copolymer micelles (BCM) were used as building blocks for the layer-by-layer assembly of BCM multilayer films. BCM film growth is governed by electrostatic and hydrogen-bonding interactions between the oppositely BCMs. Both film porosity and film thickness are dependent upon the charge density of the micelles, with the porosity of the film controlled by the solution pH and the molecular weight (Mw) of the constituents. PS7K-b-P4VP28K/PS2K-b-PAA8K films prepared at pH 4 (for PS7K-b-P4VP28K) and pH 6 (for PS2K-b-PAA8K) are highly nanoporous and antireflective. In contrast, PS7K-b-P4VP28K/PS2K-b-PAA8K films assembled at pH 4/4 show a relatively dense surface morphology due to the decreased charge density of PS2K-b-PAA8K. Films formed from BCMs with increased PS block and decreased hydrophilic block (P4VP or PAA) size (e.g., PS36K-b-P4VP12K/PS16K-b-PAA4K at pH 4/4) were also nanoporous. Furthermore, we demonstrate that the nanostructured electrochemical sensors based on patterning methods show the electrochemical activities. Anionic poly(styrene sulfonate) (PSS) layers were selectively and uniformly deposited onto the catalase (CAT)-coated surface using the micro-contact printing method. The pH-induced charge reversal of catalase can provide the selective deposition of consecutive PE multilayers onto patterned PSS layers by causing the electrostatic repulsion between next PE layer and catalase. Based on this patterning method, the hybrid patterned multilayers composed of platinum nanoparticles (PtNP) and catalase were prepared and then their electrochemical properties were investigated from sensing $H_2O_2$ and NO gas. This study was based on the papers reported by our group. (J. Am. Chem. Soc. 128, 9935 (2006); Adv. Mater. 19, 4364 (2007); Electro. Mater. Lett. 3, 163 (2007)).

Immobilization of As and Pb in Contaminated Soil Using Bead Type Amendment Prepared by Iron NanoparticlesImpregnated Biochar (철 나노 입자가 담지된 바이오차 기반 비드 형태 안정화제를 이용한 비소 및 납 오염토양의 안정화)

  • Choi, Yu-Lim;Kim, Dong-Su;Kang, Tae-Jun;Yang, Jae-Kyu;Chang, Yoon-Young
    • Journal of Environmental Impact Assessment
    • /
    • v.30 no.4
    • /
    • pp.247-257
    • /
    • 2021
  • In this work, Iron Nano-Particles Impregnated BioChar/bead (INPBC/bead) soil amendment was developed to increase biochar's reactivity to As in soil and preventing possible wind loss. Prior to preparation of INPBC/bead, INPBC was produced utilizing lignocellulosic biomass and Fe(III) solution in a hydrothermal method, followed by a calcination process. Then, the bead type amendment, INPBC/bead was produced by cross-linking reaction of alginate with INPBC. FT-IR, XRD, BET, and SEM-EDS analyses were utilized to characterize the as-synthesised materials. The particle size range of INPBC/bead was 1-4 mm, and different oxygen-containing functional groups and Fe3O4 crystalline phase were produced on the surface of INPBC/bead, according to the characterization results. The soil cultivation test was carried out in order to assess the stabilization performance of INPBC/bead utilizing As and Pb-contaminated soil obtained from an abandoned mining location in South Korea. After 4 weeks of culture, TCLP and SPLP extraction tests were performed to assess the stabilization efficacy of the amendment. The TCLP and SPLP findings revealed that raising the application ratio improved stabilizing efficiency. The As stabilization efficiency was determined to be 81.56 % based on SPLP test findings for a 5% in (w/w) INPBC/bead treatment, and the content of Pb in extracts was reduced to the limit of detection. According to the findings of this study, INPBC/bead that can maintain pH of origin soil and minimize wind loss might be a potential amendment for soil polluted with As and heavy metals.

Preparation and Characterization of Lipid Nanoparticles Containing Fat-Soluble Vitamin C Derivatives and Gallic Acid (지용성 비타민 C 유도체 및 갈릭산을 함유한 지질나노입자 제조 및 특성)

  • Ji Soo Ryu;Ja In Kim;Jae Yong Seo;Young-Ah Park;Yu-Jin Kang;Ji Soo Han;Jin Woong Kim
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.50 no.2
    • /
    • pp.103-110
    • /
    • 2024
  • Lipid nanoparticles (LNPs) are a stable and an effective system that protects cell-impermeable biologically active compounds such as nucleic acids, proteins, and peptides against degradation caused by subtle environmental changes. This study focuses on developing LNPs encapsulating gallic acid (GA), an antioxidant, to effectively prolong the half-life of tetrahexyldecyl ascorbate (THDC), a oil-soluble vitamin C derivative. These LNPs were synthesized in small, uniform sizes at room temperature and pressure conditions using a microfluidics chip. Compared to liposomes manufactured under high pressure and high temperature conditions through conventional microfluidizers, LNPs manufactured through microfluidics chips had excellent dispersion and temperature stability, and improved skin absorption as well as improved oxidative stability of fat-soluble vitamin C derivatives. Future studies will focus on ex vivo and in vivo evaluations to study skin improvement to further validate these results.

An Ellipse Fitting based Algorithm for Separating Overlapping Cells (겹친 세포 분리를 위한 타원 근사 기반 알고리즘)

  • Cho, Mi-Gyung;Shim, Jae-Sool
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.05a
    • /
    • pp.909-912
    • /
    • 2012
  • An automated cell tracking system is automatically to analyze and track changes of cell behaviors in time-lapse cell images acquired from microscope in the cell culture. In this paper, we proposed and developed an ellipse fitting based algorithm for separating very small size overlapping cells in a cell image consisted of thousands or ten thousands cells. We were extracted contours of clusters and divided them into line segments and then produced their fitted ellipses for each line segment. By experimentations, our algorithm was separated clusters with average 91% precision for two overlapping cells and average 84% precision for three overlapping cells respectively.

  • PDF

An IT Convergent Service Engineering Model based on the Dynamic Innovation Theory (동태적 혁신이론 기반의 IT 융합 서비스공학 모델)

  • Kim, Jong-Ho
    • 한국경영정보학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.349-355
    • /
    • 2007
  • 최근, 맞춤의료서비스, 헬스와 웰빙의 복합서비스, RFID 기반의 공급망 관리 서비스와 같이 정보기술(IT), 바이오기술(BT), 나노기술(NT) 등이 융합된 혁신적인 서비스들이 출현하고 있다. 그러나 기존의 전통적인 접근방법으로는 새로이 출현하는 다양한 서비스에 대한 체계적인 접근이 불가능하다. 따라서 분석의 단위를 조직이나 정보 시스템 수준에서 서비스 수준으로 하향하는 것과 요소기술이 서비스로 변환되어 소비자에게 수용되는 전체과정을 동태적, 공학적으로 설계하는 접근이 절실히 요구된다. 본 연구의 목적은 신 기술의 출현, 성숙, 시장으로의 유입과 소비자에 수용되는 서비스 생명주기 전 과정을 통태적 관점에서 분석하는 틀을 제시하고 의료서비스에 특화 하여 서비스 공학적 관점에서 IT, BT, NT가 융합된 서비스를 설계하는 모델을 제시하는 것이다. 이를 위해 우선 서비스의 특성과 서비스 시스템 설계의 목표를 제시하고 동태적 혁신이론에 기반하여 서비스의 탄생부터 시장에서의 수용에 이르는 생명주기를 표현할 수 있는 모델을 개발한다. 이 모델의 시간 축을 분기하여 단계(Stage)들을 도출하고 각 단계에서 수행해야 할 활동들을 설계한다. 아울러 모델의 실제적 유용성을 입증하기 위하여 의료분야의 관련사례를 제시하고 조직의 서비스전략과 다변화 전략을 수립하기 위한 논리도 제시하였다. 본 연구의 동태적 공학모델은 IT 생태계 (IT Ecosystem) 하에서 조직 및 IT 요소들이 다양한 환경에서 어떻게 안정적이고 효율적인 메커니즘을 형성하고 진화해야 하는지를 잘 보여주고 있다.

  • PDF

Phase Transition of $TiO_2$ prepared by HPPLT (저온균일침전법에 의해 제조된 $TiO_2$의 상변화)

  • Hwang, Du-Seon;Lee, Nam-Hui;Lee, Gang;Kim, Seon-Jae
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.208-208
    • /
    • 2003
  • 저온균일침전법(HPPLT)으로 제조된 TiO$_2$나노분말은 10$0^{\circ}C$이하의 온도에서 rutile상을 얻을 수 있다. 또한, rutile에서 anatase로의 상변화는 합성시간, 가열속도, 반응온도 그리고 음이온 첨가에 의해 일어난다고 보고되어졌지만, 금속양이온들에 의한 상변화는 알려진 바가 없다. 따라서, 다양한 양이온을 첨가하여 저온균일침전법에서 TiO$_2$의 상변화가 어떻게 일어나는지를 조사하였다. 출발원료인 TIC1$_4$를 사용하여 가수분해하여 0.67M의 TiOCl$_2$을 얻었다. 얻어진 TiOCl$_2$ 수용액에 각각 0.01M의 금속염화물(ZrOCl$_2$, NiCl$_2$, CuCl$_2$, FeCl$_3$, AlCl$_3$ 그리고 NbCl$_{5}$)을 첨가한 후 반응기에 넣고 10$0^{\circ}C$에서 4시간동안 가열하였다 가열한 후 얻어진 침전물에 NaOH 수용액을 이용하여 PH 7-8로 중화한 후 증류수로 Cl$^{-}$이온이 제거될 때까지 충분히 세척하였다. 세척된 침전물을 105$^{\circ}C$에서 24h동안 건조하여 분말을 얻었고, rutile에서 anatase로의 상변화특성을 관찰하기 위하여 XRD, SEM, TEM, ICP 분석을 실시하였다.

  • PDF

UNSM Surface Technology for Manufacturing and Remanufacturing Torsion Bars for Crawler Vehicles (초음파 나노표면개질을 적용한 궤도차량용 토션바 제조 및 재제조용 표면 개질기술에 관한 연구)

  • Suh, Chang-Min;Pyoun, Young-Sik;Cho, In-Ho;Baek, Un-Bong
    • Journal of Ocean Engineering and Technology
    • /
    • v.25 no.6
    • /
    • pp.80-85
    • /
    • 2011
  • The Ultrasonic Nanocrystal Surface Modification (UNSM) technology improves the fatigue life of a torsion bar by inducing compressive residual stress on the surface layer. The UNSM is applied to replace the presetting method and shot peening technology. The torsion bar must be changed periodically because of a lack of durability and a phenomenon related to the stress relaxation. The torsion fatigue test specimens were made of DIN17221 material, and the results showed that the fatigue life was 5 times more than under durability test conditions. A comparison test between the commercial vehicles' presetting method and shot peened torsion bar and the UNSM torsion bar showed that the UNSM could replace the presetting method and shot peening.

Etching Treatment of Vertically Aligned Carbon Nanotubes for the Application to Biosensor (바이오센서로의 응용을 위한 수직 배열된 탄소나노튜브의 식각처리)

  • Choi, Eun-Chang;Park, Yong-Seob;Choi, Won-Seok;Hong, Byung-You
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.7
    • /
    • pp.594-598
    • /
    • 2008
  • The metal catalyst particles which there is as impurities on a tip part of carbon nanotube (CNT) are not good to apply it to a nano-electronic device. It was very important the opening of CNT-tip to fix a target bio material and a material to accept in CNT in a biosensor, so we performed $HNO_3$ wet etching to remove the metal catalyst particle which there was on a tip part of CNT grown up in the study and observed the opened CNT-tip with etching time. We synthesized the CNTs using a HF-PECVD method and choses the CNT length of 700 nm for the application of nano-electronic device such as a biosensor etc.. We observed the opened CNT-tip with wet etching times of $HNO_3$ (10, 30, 60 min). From the results, we observed that the CNT-tip was opened with the increase of wet etching time lively. In case of CNTs etched during 60 min, we confirmed that there was not the ratio of Ni included in CNTsI as catalyst. Conclusively, in the case of CNT etched for 60 minutes, it is completely good for application of a biosensor and, in addition, the metal-free CNTs will contribute to the application of other nanoelectronic devices.