DOI QR코드

DOI QR Code

Oil Extraction from Nannochloropsis oceanica Cultured in an Open Raceway Pond and Biodiesel Conversion Using SO42-/HZSM-5

Open raceway pond에서 배양된 Nannochloropsis oceanica로부터 오일 추출 및 SO42-/HZSM-5를 이용한 바이오디젤 전환

  • Ji-Yeon Park (Bioenergy and Resources Upcycling Research Laboratory, Korea Institute of Energy Research) ;
  • Joo Chang Park (Department of Energy Systems Research, Ajou University) ;
  • Min-Cheol Kim (Bioenergy and Resources Upcycling Research Laboratory, Korea Institute of Energy Research) ;
  • Deog-Keun Kim (Bioenergy and Resources Upcycling Research Laboratory, Korea Institute of Energy Research) ;
  • Hyung-Taek Kim (Department of Energy Systems Research, Ajou University) ;
  • Hoseob Chang (Korea Cavitation Technology) ;
  • Jun Cheng (State Key Laboratory of Clean Energy Utilization, Zhejiang University) ;
  • Weijuan Yang (State Key Laboratory of Clean Energy Utilization, Zhejiang University)
  • Received : 2023.10.17
  • Accepted : 2023.11.20
  • Published : 2023.12.25

Abstract

In this study, microalgal oil was extracted from Nannochloropsis oceanica cultured in an open raceway pond and converted into biodiesel using a solid acid catalyst. Microalgal oil was extracted from two types of microalgae with and without nitrogen starvation using the KOH-solvent extraction method and the fatty acid content and oil extraction yield from each microalgae were compared. The fatty acid content of N. oceanica was 184.8 mg/g cell under basic conditions, and the oil content increased to 340.1 mg/g under nitrogen starvation conditions. Oil extraction yields were 90.8 and 95.4% in the first extraction, and increased to 97.5 and 98.8% after the second extraction. Microalgal oil extracted by KOH-solvent extraction was yellow in color and had reduced viscosity due to chlorophyll removal. In biodiesel conversion using the catalyst SO42-/HZSM-5, solvent-extracted oil showed a FAME content of 4.8%, while KOH-solvent-extracted oil showed a FAME content of 90.4%. Solid acid catalyst application has been made easier by removal of chlorophyll from microalgal oil. The FAME content increased to 96.6% upon distillation, and the oxidation stability increased to 11.07 h with addition of rapeseed biodiesel and 1,000 ppm butylated hydroxyanisole.

Keywords

Acknowledgement

이 논문은 2018년도 정부(과학기술정보통신부)의 재원으로 한국연구재단-과학기술국제화사업의 지원을 받아 수행되었습니다(No. NRF-2018K1A3A1A61024274).

References

  1. Monika, Banga, S., and Pathak, V.V., 2023, "Biodiesel production from waste cooking oil: A comprehensive review on the application of heterogenous catalysts", Energy Nexus, 10, 100209.
  2. Jung, C.S., Lee, Y.J., and Dong, J.I., 2007, "Life time estimation of biodiesel and biodiesel blend fuel from the oxidation stability analysis", New. Renew. Energy, 3(2), 17-23.
  3. Rocha-Meneses, L., Hari, A., Inayat, A., Yousef, L.A., Alarab, S., Abdallah, M., Shanableh, A., Ghenai, C., Shanmugam, S., and Kikas, T., 2023, "Recent advances on biodiesel production from waste cooking oil (WCO): A review of reactors, catalysts, and optimization techniques impacting the production", Fuel, 348, 128514.
  4. Hur, K.B., Park, J.K., Rhim, S.G., and Kim, S.C., 2009, "Feasibility evaluation & strategy of replacement of power generation fuel by using bio-diesel", New. Renew. Energy, 5(1), 32-39.
  5. Lee, T.S., Lee, Y.H., Kim, G.S., Kim, W., Kim, K.S., Jung, Y.S., and Park, K.G., 2012, "Yield and characterization of various biodiesel from vegetable oils and animal fats", New. Renew. Energy, 8(4), 30-37. https://doi.org/10.7849/ksnre.2012.8.4.030
  6. Mittal, V., and Ghosh, U.K., 2023, "Optimization of biodiesel production from Spirulina microalgae via nanocatalytic transesterification process", Bioresour. Technol., 23, 101504.
  7. Thanh, N.T., Mostapha, M., Lam, M.K., Ishak, S., Dasan, Y.K., Lim, J.W., Tan, I.S., Lau, S.Y., Chin, B.L.F., and Hadibarata, T., 2022, "Fundamental understanding of in-situ transesterification of microalgae biomass to biodiesel: A critical review", Energy Convers. Manag., 270, 116212.
  8. Shen, Y., Zhang, Q., Sun, X., Zhang, Y., Cai, Q., Deng, W., Rao, S., Wu, X., and Ye, Q., 2023, "Conversion of wet microalgae to biodiesel with microalgae carbon based magnetic solid acid catalyst", Energy Convers. Manag., 286, 117022.
  9. Faried, M., Samer, M., Abdelsalam, E., Yousef, R.S., Attia, Y.A., and Ali, A.S., 2017, "Biodiesel production from microalgae: Processes, technologies and recent advancements", Renew. Sust. Energ. Rev., 79, 893-913. https://doi.org/10.1016/j.rser.2017.05.199
  10. Collotta, M., Busi, L., Champagne, P., Romagnoli, F., Tomasoni, G., Mabee, W., and Alberti, M., 2017, "Comparative LCA of three alternative technologies for lipid extraction in biodiesel from microalgae production", Energy Procedia, 113, 244-250. https://doi.org/10.1016/j.egypro.2017.04.061
  11. Nazloo, E.K., Moheimani, N.R., and Ennaceri, H., 2022, "Biodiesel production from wet microalgae: Progress and challenges", Algal Research, 68, 102902.
  12. Park, J.Y., Park, M.S., Lee, Y.C., and Yang, J.W., 2015, "Advances in direct transesterification of algal oils from wet biomass", Bioresource Technology, 184, 267-275. https://doi.org/10.1016/j.biortech.2014.10.089
  13. Park, J.Y., Kim, M.C., Nam, B., Chang, H., and Kim, D.K., 2021, "Behavior of surfactants in oil extraction by surfactant-assisted acidic hydrothermal process from Chlorella vulgaris", Appl. Biochem. Biotechnol., 193, 319-334. https://doi.org/10.1007/s12010-020-03426-3
  14. Park, J.Y., Kim, M.C., Cheng, J., Yang, W., and Kim, D.K., 2020, "Extraction of microalgal oil from Nannochloropsis oceanica by potassium hydroxide-assisted solvent extraction for heterogeneous transesterification", Renewable Energy, 162, 2056-2065. https://doi.org/10.1016/j.renene.2020.10.049
  15. Kim, J.Y., Jung, J.M., Jung, S., Park, Y.K., Tsang, Y.F., Lin, K.Y.A., Choi, Y.E., and Kwon, E.E., 2022, "Biodiesel from microalgae: Recent progress and key challenges", Progress in Energy and Combustion Science, 93, 101020.
  16. Lepage, G., and Roy, C.C., 1984, "Improved recovery of fatty acid through direct transesterification without prior extraction or purification", Journal of Lipid Research, 25(12), 1391-1396. https://doi.org/10.1016/S0022-2275(20)34457-6
  17. CEN, EN 14103, 2001, "Fat and oil derivatives - Fatty acid methyl esters (FAME) - Determination of ester and linoleic acid methyl ester contents".
  18. Roncaglia, B., Papini, A., Zittelli, G.C., Rodolfi, L., and Tredici, M.R., 2021, "Cell wall and organelle modifications during nitrogen starvation in Nanochloropsis oceanica F&M-M24", J. Appl. Phycol., 33, 2069-2080. https://doi.org/10.1007/s10811-021-02416-0
  19. Janssen, J.H., Wijffels, R.H., and Barbosa, M.J., 2019, "Lipid production in Nannochloropsis gaditana during nitrogen starvation", Biology, 8(1), 5.
  20. Ferruzzi, M.G., and Blakeslee, J., 2007, "Digestion, absorption, and cancer preventative activity of dietary chlorophyll derivatives", Nutrition Research, 27(1), 1-12. https://doi.org/10.1016/j.nutres.2006.12.003
  21. Li, T., Xu, J., Wu, H., Wang, G., Dai, S., Fan, J., He, H., and Xiang, W., 2016, "A saponification method for chlorophyll removal from microalgae biomass as oil feedstock", Mar. Drugs, 14(9), 162.
  22. Syazwani, O.N., Rashid, U., and Yap, Y.H.T., 2015, "Low-cost solid catalyst derived from waste Cyrtopleura costata (Angel Wing Shell) for biodiesel production using microalgae oil", Energy Convers. Manag., 101, 749-756. https://doi.org/10.1016/j.enconman.2015.05.075
  23. Park, J.Y., Kim, D.K., Lee, J.P., Park, S.C., Kim, Y.J., and Lee, J.S., 2008, "Blending effects of biodiesels on oxidation stability and low temperature flow properties", Bioresour. Technol., 99(5), 1196-1203. https://doi.org/10.1016/j.biortech.2007.02.017
  24. Bucy, H.B., Baumgardner, M.E., and Marchese, A.J., 2012, "Chemical and physical properties of algal methyl ester biodiesel containing varying levels of methyl eicosapentaenoate and methyl docosahexaenoate", Algal Research, 1(1), 57-69. https://doi.org/10.1016/j.algal.2012.02.001