• Title/Summary/Keyword: 미세구조물제작

Search Result 174, Processing Time 0.028 seconds

핫 엠보싱을 이용한 3차원 미세 구조물 복제에 관한 연구

  • 박선준;정성일;정해도
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.150-150
    • /
    • 2004
  • 현재의 핫 엠보싱 기술은 나노/마이크로 패턴의 복제 기술로 다방면에서 연구되어지고 있다. 기존에 알려진 핫 엠보싱 기술은 하드 몰드를 사용하여 열과 압력을 가해서 PR 패턴 제작이나 나노/마이크로 구조물을 제작하였다. 그러나 이러한 하드 몰드의 사용은 3차원 구조물을 구현할 수 없다는 단점이 있다. 이에 본 연구에서는 하드 몰드 대신 소프트 몰드를 사용하여 3차원 미세 구조물을 구현해 보고자 한다.(중략)

  • PDF

미세탐침기반 기계-화학적 리소그래피공정을 이용한 3차원 미세 구조물 제작에 관한 기초 연구

  • 박미석;성인하;김대은;장원석
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.128-128
    • /
    • 2004
  • 나노 스케일의 구조물 제작에 있어서 기존의 리소그래피 공정들이 가지는 한계점을 극복하기 위해서 다양한 방식의 새로운 공정들이 개발되고 있다. 특히, 기계-화학적 가공공정을 이용한 미세탐침 기반의 나노리소그래피 기술(Mechano-Chemical Scaning Probe based Lithography; MC-SPL)은 기존의 포토리소그래피 공정의 단점을 극복하고, 보다 경제적이며 패턴 디자인 변경이 유연한 미세 패턴 제작 기술임이 확인되었다.(중략)

  • PDF

Wet Etch Process for the Fabrication of Al Electrodes and Al Microstructures in Surface Micromachining (표면 미세가공에서 Al 전극 및 Al 미세 구조물 제작을 위한 습식 식각 공정)

  • Kim, Sung-Un;Paik, Seung-Joon;Lee, Seung-Ki;Cho, Dong-Il
    • Journal of Sensor Science and Technology
    • /
    • v.9 no.3
    • /
    • pp.224-232
    • /
    • 2000
  • Aluminum metal process in surface micromachining enables to fabricate Al electrodes or Al structures, which improve electrical characteristics by reducing contact- and line-resistance or makes the whole process to be simple by using oxide as sacrificial layer. However, it is not possible to use conventional sacrificial layer etching process, because HF solution attacks aluminum as well as sacrificial oxide. The mixed solution of BHF and glycerine as an alternative shows the adequate properties to meet with this end. The exact etching properties, however, are sensitively depends on the geometry of the released structure, because the most etching process of sacrificial layer proceeds to the lateral direction in narrow space. Also, the surface roughness of aluminum affects to the etching characteristics. This paper reports experimental results on the effect of microstructure and surface roughness of aluminum to the etching properties. Considering these effects, we propose the optimized etching condition, which can be used practically for the fabrication of aluminum electrodes and microstructures by using standard surface micromachining process without modification or additional process.

  • PDF

Microsutructures of Carnonaceous Materials within Illite of the Daedong Group Slate from Jeongok Area, Korea (전곡지역 대동층군 점판암의 일랑트내에 협재된 탄질물의 미세구조)

  • 안중호;조문섭
    • Journal of the Mineralogical Society of Korea
    • /
    • v.13 no.1
    • /
    • pp.15-21
    • /
    • 2000
  • 이 연구에서는 대동층군 탄질 점판암내에 산출하는 탄질물의 미세구조를 고분해능 투과전자현미경(HRTEM)을 이용하여 조사하였다. 관찰된 탄질물은 구조가 부분적으로 흑연화된 흑연화과정의 초기단계 물질로서$ 100\AA$ 이하의 매우 얇은 크기로 일라이트 결정들의 경계면 사이나 일라이트 결정내에 협재되어 나타난다. 탄질물의 층상구조는 휘어있거나 불연속적이며, 부분적으로 원형조직을 보이는 "지문" 조직을 이루고 있다. 이러한 특징은 많은 결함구조를 가지고 구조적으로 충분히 흑연화되지 않은 물질에서 볼 수 있는 전형적인 구조다. 미세한 규모로 협재된 조직을 보이는 탄질물은 퇴적물의 속성작용과 저변성작용시 일라이트가 성장하는 동안에 포획되었거나, 또는 일라이트 이전의 점토광물내에 흡착되었던 물질들로부터 유래된 것으로 보인다. 이처럼 탄질물과 일라이트가 미세한 규모로 협재되어 산출하는 특징은 저변성암에서 일어나는 흑연화작용시 복잡한 미세구조의 변화가 수반되었음을 지시한다. 다양한 미세구조를 보여주는 흑연질 물질의 산출은 탄질물이 고온에서 균질한 흑연으로 생성되기까지 불연속적인 단계를 거쳐 반응할 가능성을 지시한다. 끝으로, 이 연구는 이온 빔을 이용하여 제작한 시료를 관찰함으로써 암석내에 함유된 탄질물들의 조직을 훼손하지 않고 관찰할 수 있음을 보여준다.

  • PDF

Dental Co-Cr alloys fabricated by selective laser melting: A review article (선택적 레이저 용융 방법으로 제작한 치과용 코발트 크롬 합금에 대한 문헌고찰)

  • Kang, Hyeon-Goo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.59 no.2
    • /
    • pp.248-260
    • /
    • 2021
  • Cobalt-chromium alloys are used to fabricate various dental prostheses, and have advantages of low cost and excellent mechanical properties compared to other alloys. Recently, selective laser melting, which is an additive manufacturing method, has been used to overcome the disadvantages of the conventional fabrication method. A local rapid heating and cooling process of selective laser melting induces fine microstructures, grain refinement, and reduction of porosities of the alloys. Therefore, it can improve mechanical properties compared to the alloys fabricated by the conventional method. On the other hand, layering process and rapid heating and cooling cause accumulation of a large amount of residual stresses that can adversely affect the mechanical properties. A heat treatment for removing residual stresses through recovery and recrystallization process caused complicated changes in mechanical properties induced by phase transformation, precipitate and homogenization of the microstructures. The purpose of this review was to compare the manufacturing methods of Co-Cr alloys and to investigate the characteristics of Co-Cr alloys fabricated by selective laser melting.

Fabrication of Glass Microstructure Using Laser-Induced Backside Wet Etching (레이저 습식 후면 식각공정을 이용한 미세 유리 구조물 제작)

  • Kim, Bo Sung;Park, Min Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.9
    • /
    • pp.967-972
    • /
    • 2014
  • The good light permeability and hardness of glass allow it to be used in various fields. Non-conventional machining methods have been used for glass machining because of its brittle properties. As one non-contact machining method, a laser has advantages that include a high machining speed and the fact that no tool making is required. However, glass has light permeability. Thus, the use of a laser to machine glass has limitations. A nanosecond pulse laser can be used at low power for laser-induced backside wet etching, which is an indirect method. In previous studies, a short-wave laser that had good light absorption but a high price was used. In this study, a near-infrared laser was used to test the possibility of glass micro-machining. In particular, when deeper machining was conducted on a glass structure, more problems could result. To solve these problems, microstructure manufacturing was conducted using ultrasonic vibration.

Application of Bio-MEMS Technology on Medicine and Biology (Bio-MEMS : MEMS 기술의 의료 및 생물학 응용)

  • Jang, Jun-Geun;Jung, Seok;Han, Dong-Chul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.7
    • /
    • pp.45-51
    • /
    • 2000
  • 지난 세기부터 MEMS 제작 기술을 이용하여 만들어진 시스템들을 의학이나 생물학적인 용도로 응용하기 위한 많은 연구가 활발히 이루어져 왔다. 기술적인 측면에서 이러한 연구들은 MEMS 분야의 초창기에 강조되어 온 표면 및 몸체 미세 가공 기술(surface & bulk micromachining)과 같은 미세 구조물 제작 기술의 발전에 힘입은 바 크다. 그러나 MEMS 기술이 점차 발전되어 오면서, 가공 기술이 고도화되고 미세 시스템의 구조가 점차 복잡해짐에 따라, 많은 연구들이 단순한 가공기술을 넘어 미세 시스템을 조립하고 집적화할 수 있는 기술, 접합 (bonding) 기술, 패키징 (packaging) 기술, 3차원 형상의 제작 기술, 실리콘(silicon)이나 유리(glass)가 아닌 다른 재료를 이용한 미세 가공 기술 등의 개발을 중심으로 이루어지고 있다.(중략)

  • PDF

A MEMS Z-axis Microaccelerometer for Vertical Motion Sensing of Mobile Robot (이동 로봇의 수직 운동 감지를 위한 초소형 MEMS Z축 가속도계)

  • Lee, Sang-Min;Cho, Dong-Il Dan
    • The Journal of Korea Robotics Society
    • /
    • v.2 no.3
    • /
    • pp.249-254
    • /
    • 2007
  • 본 논문에서는 웨이퍼 레벨 밀봉 실장된 수직 운동 가속도 신호를 감지할 수 있는 초소형 Z축 가속도 센싱 엘리먼트를 제작하였다. 초소형 Z축 가속도 센싱 엘리먼트는 수직 방향의 정전용량 변화를 필요로 하기 때문에 단일 기판상에 수직 단차의 형성을 가능케 하는 확장된 희생 몸체 미세 가공 기술 (Extended Sacrificial Bulk Micromachining, ESBM) 을 이용하여 제작되었다. 확장된 희생 몸체 미세 가공 기술을 이용하면 정렬오차가 없이 상하부 양쪽에 수직 단차를 갖는 실리콘 구조물의 제작이 가능하다. 또한, MEMS 센싱 엘리먼트의 부유된 실리콘 구조물을 보호하기 위하여 웨이퍼 레벨 밀봉 실장 기술이 적용하여 고신뢰성, 고수율, 고성능의 Z축 가속도 센서를 제작하였다. 신호 처리 회로와 가속도 센서를 결합하여 Z축 가속도 센싱 시스템을 제작하였고 운동가속도 범위 10 g 이상, 정지 드리프트 17.3 mg 그리고 대역폭 60 Hz 이상의 성능을 나타내었다.

  • PDF

MeV급 양성자 빔을 이용한 PMMA 리소그래피

  • Choi, Han-Woo;Woo, Hyung-Joo;Hong, Wan;Kim, Young-Seok;Kim, Gi-Dong;Kim, Jun-Gon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2000.02a
    • /
    • pp.90-90
    • /
    • 2000
  • 이온빔을 이용한 리소그래피의 경우 미크론 이하의 미세구조를 형성할 수 있는 유용한 수단으로서 방사광 X-선과 함께 주목을 받고 있으며, 이와 같은 미세구조 제작은 MEMS (Micro Electro-Mechanical System) 개발에 있어서 매우 중요하다. 그러나 이온빔을 이용한 리소그래피에 대한 연구가 많이 이루어져 있지 않은 상태이다. MeV급 양정사 빔을 이용한 리소그래피의 가능성을 확인하기 위하여 기본적인 실험을 수행하였으며, 최적 이온빔 조사 조건 및 최적 현상 조건을 도출하였다. Resist로는 PMMA를 사용하였으며, 1.8 MeV 양성자 빔을 사용하여 50$\mu\textrm{m}$ 깊이의 구조물을 만들었다. 1.8MeV 양성자 빔의 조사선량이 7x1013ions/cm2 이상이 되면 PMMA 내부에 기포가 형성되므로 적정 조사선량을 4x1013 ions/cm2으로 결정하였다. 또한 선량을 4x1013ions/cm2 으로 고정하고 선량률을 변화시켜주면 선량률이 8x1011ions/cm2S 일 때부터 시료에 기포나 터짐 현상 등의 문제가 발생하였으며 5x1010~~1x1010ions/cm2s 의 선량률이 조사시간, 결함측면에서 가장 적합한 영역임을 알 수 있었다. 현상제로는 20% morpholine, 5% etanolamine 60% diethylenglykol-monobutylether, 15% 증류수를 혼합하여 사용하였다. 현상 온도를 30~5$0^{\circ}C$로 변화시켜서 현상을 한 결과, 4$0^{\circ}C$에서 현상 소요시간은 1시간 이내이며 SEM으로 관찰된 표면의 상태도 제일 양호한 결과를 보였다. 82 mesh 밀도, 선굵기 60$\mu\textrm{m}$, 크기 20x20 mm인 백금 망을 마스크로 사용하여 실제 3차원 미세구조를 제작하여 보았다. 그림 1에서 제작된 구조물의 SEM 사진을 보여주었으며, 식각된 면의 조도가 매우 뛰어나며 모서리의 직각성도 우수함을 확인할 수 있다. 이와 같이 도출된 시험 조건을 기초로 하여 리소그래피 후에 전기 도금을 이용한 금속 몰드 제작 및 이온빔 리소그래피 장점을 최대한 살릴수 있는 미세구조 제작에 대한 연구를 계속 추진할 계획이다.

  • PDF

Silicon microstructure prepared by a dry etching (Dry Etching에 의해 제작된 실리콘 미세 구조물)

  • 홍석민;임창덕;조정희;안일신;김옥경
    • Journal of the Korean Vacuum Society
    • /
    • v.6 no.3
    • /
    • pp.242-248
    • /
    • 1997
  • Porous silicons were prepared by dry etching as well as by chemical etching. The latter is a conventional method used by many researchers. Meanwhile, the former is a new method we developed. Also the porous silicon structure was made by E-beam lithography technique. However, due to the limit of this technique, minimum size we could produce was about 0.3 $\mu\textrm{m}$ in diameter on silicon wafer. In a new method, the porous silicon microstructure was fabricated by using Reactive Ion Etching method after covering with diamond powder on 4 inch wafer by using spin coater. In this method, diamond powder acted as a mask. The morphology of samples prepared under many different conditions were analysed be SEM and AFM. And we measured PL spectra for the samples. Based on these results, we observed the structure of a few hundreds $\AA$ in size from porous silicon which was made by dry etching with diamond powder. Also the PL peak for these samples lied around 590 nm compared to 760 nm for chemically etched porous silicon.

  • PDF