• Title/Summary/Keyword: 물흡수선량 표준

Search Result 7, Processing Time 0.028 seconds

Chamber to Chamber Variations of a Cylindrical Ionization Chamber for the Calibration of an $^{192}Ir$ Brachytherapy Source Based on an Absorbed Dose to Water Standards (물흡수선량 표준에 기반한 $^{192}Ir$ 근접치료 선원 교정 시 원통형 이온함의 이온함 간 변화)

  • Kim, Seong-Hoon;Huh, Hyun-Do;Choi, Sang-Hyun;Kim, Chan-Hyeong;Min, Chul-Hee;Shin, Dong-Oh;Choi, Jin-Ho
    • Progress in Medical Physics
    • /
    • v.20 no.1
    • /
    • pp.7-13
    • /
    • 2009
  • This work is for the preliminary study for the calibration of an $^{192}Ir$ brachytherapy source based on an absorbed dose to water standards. In order to calibrate brachytherapy sources based on absorbed dose to water standards using a clyndirical ionization chamber, the beam quality correction factor $k_{Q,Q_0}$ is needed. In this study $k_{Q,Q_0}s$ were determined by both Monte carlo simulation and semiexperimental methods because of the realistic difficulties to use primary standards to measure an absolute dose at a specified distance. The 5 different serial numbers of the PTW30013 chamber type were selected for this study. While chamber to chamber variations ran up to maximum 4.0% with the generic $k^{gen}_{Q,Q_0}$, the chamber to chamber variations were within a maximum deviation of 0.5% with the individual $k^{ind}_{Q,Q_0}$. The results show why and how important ionization chambers must be calibrated individually for the calibration of $^{192}Ir$ brachytherapy sources based on absorbed dose to water standards. We hope that in the near future users will be able to calibrate the brachytherapy sources in terms of an absorbed dose to water, the quantity of interest in the treatment, instead of an air kerma strength just as the calibration in the high energy photon and electron beam.

  • PDF

웹에 기반한 선량교정 프로그램 개발

  • 신동오;서원섭;박성용;김성훈;지영훈;김근배;이창건;강진오;홍성언
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2003.09a
    • /
    • pp.66-66
    • /
    • 2003
  • 목적 : 선량측정의 정확성을 향상시키기 위하여 물 흡수선량 표준에 토대를 두고 있는 표준측정법, AAPM TG-51과 IAEA TRS-398, 이 발표되어 선량측정의 파라다임이 변화하고 있다. 본 연구에서는 이들 대표적인 표준측정법에 대하여 사용자 편의성을 고려하여 웹에 기반한 선량교정 프로그램을 개발하고자 한다. 대상 및 방법 : 미국의학물리학회 AAPM TG-51과 국제원자력기구 IAEA TRS-398 표준측정법에 선량교정 프로그램은 Microsoft IIS 6.0 웹서버와 .NET 플렛폼상에서 Visual Studio. NET 도구를 사용하여 개발하였다. 개발언어로는 C# 언어를 사용하였고 각 표준측정법에 대한 선량교정 작업서는 ASP. NET 페이지로 작성하였다. 웹페이지와 산량 교정 모듈을 분리하여서 개발 후 유지보수가 쉽게 설계하였다. 또한 기준점에서의 선량 계상에 사용하는 모든 물리적인 파라미터와 데이터는 데이터베이스에 저장하였다. 이로써 향후 수식체계의 변화 또는 물리적인 데이터의 변화로 인한 프로그램 수정이 최소화하도록 하였다. 결과 : 이들 표준측정법은 모두 물 흡수선량 교정인수에 토대를 두고 있으나 측정 조건 및 물리적인 자료 에 있어 약간의 차이를 보이고 있다. 그러므로 각 표준측정법간의 유사점 및 차이점을 비교 분석하기가 용이하였다. 그리고 개발된 프로그램을 이용하여 표준측정법에서 제시된 선량교정 작업서에 따라 선량 교정을 수행한 교정 결과 데이터를 XML 파일 형식으로 저장하여 이전의 측정 자료를 관리할 수 있게 하였다. 이 과거 측정 자료를 사용하여 출력 선량 교정의 변화 및 기타 중요한 물리적인 데이터 값의 변화를 분석할 수 있다. 결론 : 두 표준측정법에 대한 선량교정 프로그램은 사용자가 선호하는 표준측정법을 선택할 수 있고, 웹에 토대를 두고 있어 프로그램으로 전국 방사선종양학과의 방사선치료기기의 출력 및 물리적인 변화에 대한 자료를 비교 분석하기 용이하고 수작업으로 인해 발생할 수 있는 실수 및 오차를 줄일 수 있다. 또한 개발된 프로그램의 활용을 통하여 국내 실정에 적합한 물 흡수선량 표준에 기반한 표준측정법 개발에 토대를 마련하는데 있어 기여할 것으로 사료된다.

  • PDF

Evaluation of the Long-Term Stability for the Cylindrical Ionization Chambers (교정정수 변화에 의한 원통형이온함의 안정성 평가)

  • Rah Jeong-Eun;Hong Ju-Young;Kim Gwe-Ya;Lim Chun-Il;Jeong Hee-Kyo;Shin Dong-Oh;Suh Tea-Suk
    • Radiation Oncology Journal
    • /
    • v.24 no.2
    • /
    • pp.138-143
    • /
    • 2006
  • Purpose: To analyze the long-term stability of Farmer-type cylindrical ionization chambers by calibration factor provided from the KFDA (Korea Food Drug Administration) Materials and Methods: The cylindrical ionization chambers used in this study were the PTW 30001 (30006), 30013, 30002, 30004, 23333, the Capintec PR06C, the WE 2571, the Exradin A12 and the Wellhofer FC65G (IC70). We were analyzed that the $N_k$ and $N_{D.W}$ calibration factor for the cylindrical chambers and compared between the measured $N_{D.W}$ and calculated $N_{D.W}$ calibration factor. Results: We have observed that the long-term stability of the PTW 30013 (30006), the Wellhofer FC65G (IC70) and the NE 2571 has varied within 0.2%. The measured $N_{D,W}$ calibration factor was about 1.0% higher than the calculated $N_{D,W}$ that determined by the $N_k$ calibration factor. Conclusion: The study has evaluated that the long-term stability of the cylindrical chambers through analysis for the $N_k\;and\;N_{D,W}$ calibration factor. It has contributed to the improvement of clinical electron dosimetry in radiotherapy centers.

Chamber-to-chamber Variations in the Same Type of a Cylindrical Chamber for the Measurements of Absorbed Doses (흡수선량 측정 시 동종 원통형 이온함에서 이온함 간 변화)

  • Kim, Seong-Hoon;Huh, Hyun-Do;Choi, Sang-Hyun;Kim, Hyeog-Ju;Lim, Chun-Il;Shin, Dong-Oh;Choi, Jin-Ho
    • Progress in Medical Physics
    • /
    • v.21 no.1
    • /
    • pp.120-125
    • /
    • 2010
  • For the measurements of an absorbed dose using the standard dosimetry based on an absorbed dose to water the variety of factors, whether big, small, or tiny, may influence the accuracy of dosimetry. The beam quality correction factor ${\kappa}_{Q,Q_0}$ of an ionization chamber might also be one of them. The cylindrical type of ionization chamber, the PTW30013 chamber, was chosen for this work and 9 chambers of the same type were collected from several institutes where the chamber types are used for the reference dosimetry. They were calibrated from the domestic Secondary Standard Dosimetry Laboratory with the same electrometer and cable. These calibrated chambers were used to measure absorbed doses to water in the reference condition for the photon beam of 6 MV and 10 MV and the electron beam of 12 MeV from Siemens ONCOR. The biggest difference among chambers amounts to 2.4% for the 6 MV photon beam, 0.8% for the 10 MV photon beam, and 2.4% for the 12 MeV electron beam. The big deviation in the photon of 6 MV demonstrates that if there had been no problems with the process of measurements application of the same ${\kappa}_{Q,Q_0}$ to the chambers used in this study might have influenced the deviation in the photon 6 MV and that how important an external audit is.

The Study on the Use of a Cylindrical Ionization Chamber for the Calibration of a 6 MeV Electron Beam (6 MeV 전자 빔의 교정에 원통형 이온함의 사용에 관한 연구)

  • Kim, Seong-Hoon;Huh, Hyun-Do;Choi, Sang-Hyun;Choi, Jin-Ho;Kim, Hyeog-Ju;Lim, Chun-Il;Shin, Dong-Oh
    • Progress in Medical Physics
    • /
    • v.20 no.4
    • /
    • pp.317-323
    • /
    • 2009
  • The standard dosimetry systems based on an absorbed dose to water recommend to use a planeparallel chamber for the calibration of such a low-megavoltage electron beam as a nominal energy of 6 MeV. For this energy ranges of an electron beam a cylindrical chamber should not be used for the routinely regular beam calibration, but the feasibility of the temporary use of a cylindrical chamber was studied to give temporary solutions for special situations users meet. The PTW30013 chambers and the electron beam quality of $R_{50}=2.25\;g/cm^2$ were selected for this study. 10 PTW30013 chambers, a cylindrical type of chamber, were calibrated in KFDA, the secondary standards dosimetry laboratories, and given the absorbed dose-to-water calibration factors, respectively. A "temporary" $k_{Q,Q_0}$ for each chamber were calculated using the absorbed dose determined by a cross-calibrated planeparallel chamber, with the result of an average 0.9352 for 10 chambers. This value for PTW30013 chamber was used to determine an absorbed dose to water at the reference depth. The absorbed doses determined by PTW30013 chambers were in an agreement within 2% with that by ROOS chamber. In a certain situation where a cylindrical chamber be used instead of a planeparellel chamber, the value of 0.9352 might be useful to determine an absorbed dose to water in the same beam quality of electron beam as this study.

  • PDF

Study on Absorbed Dose Determination of Electron Beam Quality for Cross-calibration with Plane-parallel Ionization Chamber (평행평판형이온함의 교차교정 시 전자선 선질에 따른 흡수선량 결정에 대한 연구)

  • Rah, Jeong-Eun;Shin, Dong-Oh;Park, So-Hyun;Jeong, Ho-Jin;Hwang, Ui-Jung;Ahn, Sung-Hwan;Lim, Young-Kyung;Kim, Dong-Wook;Yoon, Myong-Geun;Shin, Dong-Ho;Lee, Se-Byeong;Suh, Tae-Suk;Park, Sung-Yong
    • Progress in Medical Physics
    • /
    • v.20 no.2
    • /
    • pp.97-105
    • /
    • 2009
  • Absorbed dose to water based protocols recommended that plane-parallel chambers be calibrated against calibrated cylindrical chambers in a high energy electron beam with $R_{50}$>7 $g/cm^2$ (E${\gtrsim}$16 MeV). However, such high-energy electron beams are not available at all radiotherapy centers. In this study, we are compared the absorbed dose to water determined according to cross-calibration method in a high energy electron beam of 16 MeV and in electron beam energies of 12 MeV below the cross-calibration quality remark. Absorbed dose were performed for PTW 30013, Wellhofer FC65G Farmer type cylindrical chamber and for PTW 34001, Wellhofer PPC40 Roos type plane-parallel chamber. The cylindrical and the plane-parallel chamber to be calibrated are compared by alternately positioning each at reference depth, $Z_{ret}=0.6R_{50}-0.1$ in water phantom. The $D_W$ of plane-parallel chamber are derived using across-calibration method at high-energy electron beams of 16, 20 MeV. Then a good agreement is obtained the $D_W$ of plane-parallel chamber in 12 MeV. The agreement between 20 MeV and 12 MeV are within 0.2% for IAEA TRS-398.

  • PDF

Practical Output Dosimetry with Undefined $N_{dw}{^{Co-60}}$ of Cylindrical Ionization Chamber for High Energy Photon Beams of Linear Accelerator ($N_{dw}{^{Co-60}}$이 정의되지 않은 원통형 이온전리함을 이용한 고에너지 광자선의 임상적 출력선량 결정)

  • Oh, Young-Kee;Choi, Tae-Jin;Song, Ju-Young
    • Progress in Medical Physics
    • /
    • v.23 no.2
    • /
    • pp.114-122
    • /
    • 2012
  • For the determination of absorbed dose to water from a linear accelerator photon beams, it needs a exposure calibration factor $N_x$ or air kerma calibration factor $N_k$ of air ionization chamber. We used the exposure calibration factor $N_x$ to find the absorbed dose calibration factors of water in a reference source through the TG-21 and TRS-277 protocol. TG-21 used for determine the absorbed dose in accuracy, but it required complex calculations including the chamber dependent factors. The authors obtained the absorbed dose calibration factor $N_{dw}{^{Co-60}}$ for reduce the complex calculations with unknown $N_{dw}$ only with $N_x$ or $N_k$ calibration factor in a TM31010 (S/N 1055, 1057) ionization chambers. The results showed the uncertainty of calculated $N_{dw}$ of IC-15 which was known the $N_x$ and $N_{dw}$ is within -0.6% in TG-21, but 1.0% in TRS-277. and TM31010 was compared the $N_{dw}$ of SSDL to that of PSDL as shown the 0.4%, -2.8% uncertainty, respectively. The authors experimented with good agreement the calculated $N_{dw}$ is reliable for cross check the discrepancy of the calibration factor with unknown that of TM31010 and IC-15 chamber.