• Title/Summary/Keyword: 물체표면조건

Search Result 65, Processing Time 0.02 seconds

How is the inner contour of objects encoded in visual working memory: evidence from holes (물체 내부 윤곽선의 시각 작업기억 표상: 구멍이 있는 물체를 중심으로)

  • Kim, Sung-Ho
    • Korean Journal of Cognitive Science
    • /
    • v.27 no.3
    • /
    • pp.355-376
    • /
    • 2016
  • We used holes defined by color similarity (Experiment 1) and binocular disparity (Experiment 2) to study how the inner contour of an object (i.e., boundary of a hole in it) is encoded in visual working memory. Many studies in VWM have shown that an object's boundary properties can be integrated with its surface properties via their shared spatial location, yielding an object-based encoding benefit. However, encoding of the hole contours has rarely been tested. We presented objects (squares or circles) containing a bar under a change detection paradigm, and relevant features to be remembered were the color of objects and the orientation of bars (or holes). If the contour of a hole belongs to the surrounding object rather than to the hole itself, the object-based feature binding hypothesis predicts that the shape of it can be integrated with color of an outer object, via their shared spatial location. Thus, in the hole display, change detection performance was expected to better than in the conjunction display where orientation and color features to be remembered were assigned to different parts of a conjunction object, and comparable to that in a single bar display where both orientation and color were assigned into a single bar. However, the results revealed that performance in the hole display did not differ from that in the conjunction display. This suggests that the shape of holes is not automatically encoded together with the surface properties of the outer object via object-based feature binding, but encoded independently from the surrounding object.

A Numerical Study of Nonlinear Free-surface Flows Generated by Motions of Two Dimensional Cylinders (2차원 실린더의 운동에 기인한 비선형 자유표면 유동의 수치해석)

  • Lee, Ho-Young
    • Journal of Ocean Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.85-98
    • /
    • 1998
  • 본 논문의 수치해법은 경계치문제를 풀기 위하여 코시이론(Cauchy's theorem)을 사용하였다. 경계치문제는 완전한 물체표면조건과 자유표면조건을 만족시키는 초기치문제로 귀결된다. 현 수치해법에서 무한영역은 수치계산 영역인 비선형 영역과 선형 자유표면조건을 만족하는 선형영역으로 나누어진다. 선형영역의 해는 과도 그린(Green)함수를 사용하여 정합조건을 부과함으로써, 수치계산은 비선형 영역에서만 수행된다. 본 논문에서 저자는 수치계산 영역에서 코시이론을 사용하여 적분방정식을 도출하였고, 무한영역의 해는 정합면에서 과도 그린함수를 사용하여 표현하였다. 본 수치계산에서 자유표면에 요소 재분배법을 적용함으로써 쇄파현상에 대해서도 안정적인 수치해석을 할 수 있었다. 본 논문에서 개발된 수치방법을 적용한 문제는 다음과 같다. 첫째는 자유표면에서 실린더가 강제동요하는 경우에 자유표면형상과 힘을 계산하여 이전의 실험치 및 계산치와 비교하였다. 두번째로는 실린더가 자유수면하에서 일정한 속도로 항주하는 경우에는 조파저항과 양력을 계산하여 고차 스펙트럴법과 비교하였다.

  • PDF

접지설계 기술 기준 및 시공기술⑸

  • 이규복
    • Electric Engineers Magazine
    • /
    • v.226 no.6
    • /
    • pp.16-21
    • /
    • 2001
  • 정전기발생은 물질의 성질, 이동속도, 절연성을 갖는다는 것이 정전기를 축적하는 조건이 된다. 물체의 이도속도가 클수록 정전기의 발생량이 커지게 된다. 접속면의 크기 및 표면의 상태도 정전기의 발생량에 관계한다. 접속면이 크고 상호간에 양물체가 격하게 운동하는 조건일때 정전기의 발생량이 커지게 된다.

  • PDF

Middle School and Science-gifted Students' Conceptions about Motion of Objects on the Surface of the Earth and the Moon (지구와 달 표면에서 물체의 운동에 대한 일반 중학생들과 과학영재학생들의 개념)

  • Song, Young-Wook
    • Journal of The Korean Association For Science Education
    • /
    • v.33 no.1
    • /
    • pp.193-207
    • /
    • 2013
  • The purpose of this study was to investigate middle school and science-gifted students' conceptions about motion of objects on the surface of the earth and the moon. The subjects were 61 first-, 51 second-, 51 third-year students, for a total of 163 in a middle school and 32 science-gifted students from a university-affiliated sciencegifted education center for secondary school students. The research contents were conceptions about motion of objects by the vertical direction, an inclined plane and horizontal plane on the surface of the earth and the moon. The questions were as follows: If two balls, same size but different mass, were put on, thrown over, by the vertical direction, an inclined plane and a horizontal plane on the surface of the earth and the moon at the same time and speed, which one would arrive faster than the other?; In the same mass in the earth and the moon, how fast could the object reach to which location, the earth or the moon? The results showed that science-gifted students offer meaningful difference on the concept of objects in motion at the vertical direction, an inclined plane and a horizontal plane on the earth and at the vertical direction on the moon than general middle school students. There were meaningful difference on the vertical up direction, an inclined plane and a horizontal plane in the same situation in the earth and the moon. Finally, based on the results of our study, we discuss possible educational implications for teaching the concept of objects in motion.

A Study on the Design of Ship′s Bow Form using Surface Panel Method (판요소법을 이용한 선수형상 설계에 관한 연구[1])

  • Jae-Hoon Yoo;Hyo-Chul Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.33 no.3
    • /
    • pp.35-47
    • /
    • 1996
  • A surface panel method treating a boundary-value problem of the Dirichlet type is presented to design a three dimensional body with free surface corresponding to a prescribed pressure distribution. An integral equation is derived from Green's theorem, giving a relation between total potential of known strength and the unknown local flux. Upon discretization, a system of linear simultaneous equations is formed including free surface boundary condition and is solved for an assumed geometry. The pseudo local flux, present due to the incorrect positioning of the assumed geometry, plays a role f the geometry corrector, with which the new geometry is computed for the next iteration. Sample designs for submerged spheroids and Wigley hull and carried out to demonstrate the stable convergence, the effectiveness and the robustness of the method. For the calculation of the wave resistance, normal dipoles and Rankine sources are distributed on the body surface and Rankine sources on the free surface. The free surface boundary condition is linearized with respect to the oncoming flow. Four-points upwind finite difference scheme is used to compute the free surface boundary condition. A hyperboloidal panel is adopted to represent the hull surface, which can compensate the defects of the low-order panel method. The design of a 5500TEU container carrier is performed with respect to reduction of the wave resistance. To reduce the wave resistance, calculated pressure on the hull surface is modified to have the lower fluctuation, and is applied as a Dirichlet type dynamic boundary condition on the hull surface. The designed hull form is verified to have the lower wave resistance than the initial one not only by computation but by experiment.

  • PDF

Analysis of Steady Flow Around a Two-Dimensional Body Under the Free Surface Using B-Spline Based Higher Order Panel Method (B-Spline 기저 고차경계요소법에 의한 자유수면하의 2차원 물체주위 유동해석)

  • Jae-Moon Lew;Yang-Ik Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.39 no.1
    • /
    • pp.8-15
    • /
    • 2002
  • A two-dimensional higher order panel method using B-splines has been developed to overcome the disadvantages of the low order panel method and to obtain more accurate solution. The sources and the normal dipoles are distributed on both the body and the free surface. Instead of applying the upwind finite difference schemes to satisfy the linearized free surface and the radiation condition, the derivatives of the basis functions of the B-splines are directly applied to the linearized free surface condition. Numerical damping in the Dawson's method are avoided in the Present computations. In order to validate the present method, numerical computations are carried out for a submerged cylinder and a two-dimensional hydrofoil steadily moving beneath a free surface. The numerical results show that fast convergence and better accuracies have been achieved by the present method.

A Numerical Simulation of a Viscous Flow behind a Sea-botton Isolated Ridge in Shallow Water (천해수역에 위치한 3차원 해저돌출물 주위 점성유동장의 수치시뮬레이션)

  • Lee, Young-Gill;Miyata, Headeki;Lee, Guen-Moo
    • Journal of Ocean Engineering and Technology
    • /
    • v.6 no.1
    • /
    • pp.29-42
    • /
    • 1992
  • 자유표면하에 잠긴 복잡한 3차원 물체 주위의 흐름을 해소하기 위한 수치계산법이 TUMMAC(Tokyo Univ. Modified Marker And Cell)법을 기초로 하여 개발되었다. 임의물체의 no-slip 3차원 물체표면조건을 보다 간단히 처리하기 위하여 "porosity"라는 개념이 도입되었으며, 담수성에 잠겨 있는 해저돌출물 주위의 유동을 계산하여 그 응용성을 검토하였다. 돌출물 후방의 복잡한 와동들의 상호간섭이 잘 시뮬레이션 되었다.시뮬레이션 되었다.

  • PDF

On Two-Dimensional Large-Amplitude Motions in Regular Wave (규칙파중에서의 주상체의 대진폭 운동에 관한 연구)

  • Yong-Jig,Kim
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.26 no.2
    • /
    • pp.25-31
    • /
    • 1989
  • Two-dimensional large-amplitude motions in regular harmonic wave are treated in time domain, by satisfying the exact body boundary condition and the linear free surface condition. For the present numerical calculation, the method of free-surface spectral representation with simple source distribution on the instantaneous body surface has been extended to include the effect of the incident wave. Calculations of the wave exciting force are performed for a submerged circular cylinder fixed or oscillating with large amplitude. Especially, nonlinear effects on the time-mean forces are studied in detail. It is shown that relative motion between the body and the fluid particle gives a significant effect on the lift and drift forces. Also, large-amplitude motion of a submerged circular cylinder and that of a floating Lewis-form cylinder are directly simulated in time domain. In the calculation results, some nonlinear effects are shown.

  • PDF

Categorization of Aspect view direction for 3D object′s Pose Estimation (3차원 물체의 자세정보 추출을 위한 측면 측정방향군의 범주화)

  • 이재영
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2001.04b
    • /
    • pp.508-510
    • /
    • 2001
  • 3차원 물체의 인식과 공간 정보를 추출해 내는 것이 물체인식의 주요 목적이다. 본 논문에서는 평면의 표면을 갖는 기하학적 물체들을 인식하는데 인공신경망이 적용 가능함이 조사되었다. 물체인식을 위한 모델들은 CAD모델들로부터 자동적으로 추출되며, 획득된 물체의 영상과 일치하는 물체의 국면(aspect)과의 매칭은 조건만족 인경신경망을 이용하여 매칭-오차를 최소화시키는 방법을 처리되었다. 인식된 물체의 국면이 어느 방향에서 획득되었는지에 대한 정보(Aspect's view direction)는 검색된 가시 평면들의 분포로부터 추출됨을 ART와 같은 인공신경망을 이용하여 실시간으로 복원할 수 있음을 보였다. 대표적이 측정방향과 이 측정방향으로부터의 편차들을 한 범주에 넣고 학습을 통해 정확한 측정방향 정보들을 구하며, 획득된 3차원 물체의 영상들에 따라 자동적으로 측정방향범주 들이 추가되도록 한다.

  • PDF

Numerical Analysis of Lifting Potential Flow around a Three-Dimensional Body moving beneath the Free Surface (자유표면하에서 전진하는 3차원 물체 주위의 양력 흐름 수치 해석)

  • B.K. Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.29 no.3
    • /
    • pp.21-32
    • /
    • 1992
  • Numerical solutions are presented for solving the free surface flow created by a three-dimensional body moving beneath the free surface with constant velocity at an angle of attack. The solution is obtained using a panel method based on the perturbation potential, which employs Havelock sources and normal dipoles distributed on the body surface and Havelock normal dipoles in the wake downstream of the trailing edge. A pressure Kutta condition with an iterative solution procedure is implemented to satisfy equal pressure condition on the upper and lower surfaces at the trailing edge. Numerical calculation examples in the present paper include an ellipsoid at zero angle of attack, a rectangular planform wing at a small angle of attack in the limit of zero Froude number and then free surface flows and hydrodynamic forces acting on the submerged spheroid and parabolic strut are calculated. Discussions are made about the validity of the present method.

  • PDF