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1. Introduction

When a body is doing the oscillation with
large amplitude such as the slamming, the
sloshing of fluid inside the tank and the ship

overturning phenomenon in waves, etc., its
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solution is deviated from that of the linear
analysis and a nonlinear analysis is required.
Longuet-Higgins and Cokelet[1] who applied the
complete nonlinear free surface condition to the
analysis of the free surface flow for the first
time, has calculated numerically a plunging
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breaker problem by using comformal mapping in
case that the depth of water is infinite. Since
then, Failtinsen([2, 3] treated the sloshing problem
inside a tank by using the method of source
distribution, and the heaving problem of the
two-dimensional floating body by using the
Green’s second identity. Vinje and Brevigl4l
derived a boundary integral equation from
Cauchy’s theorem, and computed the heaving
problem of foating body in waves by using the
condition of periodicity as a matching condition.
and  Yuel5]
problem of an axisymmetric floating body by

Dommermuth treated heaving
using the Green’s second identity.

They used a solution of external field which
obtained by numerical integration of the linear
transient Green function to match with the
The
treated in this paper is heaving and swaying

nonlinear inner solution. first problem

motions of two dimensional floating body.
Faltinsen{2], Vinje and Brevig{4] applied semi-
Lagrangian-time stepping method to the problem
of heaving motion of floating body. The second
problem is the free surface problem generated by
an submerged cylinder which runs with constant
velocity. Havelock[6] computed wave resistance
and lift force coefficients based on the linear
theory for the case that submerged circular
cylinder translates with constant velocity. Kim{7]
obtained wave resistance for a submerged elliptic
cylinder by using a higher order spectral method
considering weakly nonlinear effect of free
surface. This paper computes the free surface
problems of submerged cylinders by applying
fully nonlinear free surface conditions also using
semi-Lagrangian time stepping method.

2. Formulation of boundary value problem

In the present work, we calculate two~

dimensional initial boundary value problem by

using both a complete free surface boundary
condition and an accurate body surface boundary
condition. Fluid is inviscid and incompressible,
and velocity potential exists when fluid motion 1s
assumed irrotational. In addition, surface tension
is ignored and the depth of water is infinite. The
present coordinate system(Fig. 1) is the space
fixed coordinate systemn, keeping x-axis at a
calm water and y-~axis in vertical direction. The
compuation domain 1s divided into the numerical
calculation domain and the external domain
where the linear free surface condition is applied.
The total velocity potential @ satisfies two

dimensional Laplace equation as follows:

vig = (0 ,t=0 (1)

The nonliear dynamic boundary condition of

free surface is as follows:

DO
Dt

=5ww ~—gy ,y=nx) (2)

M]»—A

. ,
where w = u -iv

The nonlinear kinematic boundary condition of

free surface is as follows:

Dz
Dt

=u-+iv

,y=n(x) where z = x + iy(3)

where u i1s the fluid velocity in x-direction, and
v 1s that in y-direction. The boundary condition
at body surface is as follows.

.=V, =0 (4)

where @, 1s normal fluid velocity and V, 1s
normal velocity of body points. The equation of
(4) is expressed as equation of (5) by

transform(4].

U=Uyly—yo)— Volx —x¢) —1/2 IR® (5)

where Uy and Vo are the body velocity at
gravity center, and § is the angle of rotation of
body. Since the motion of body starts from rest,
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initial condition is as follows:

o0

@———7{:0. ,vy<0 ,t<0 6)

Linear velocity potential, ¢, in external domain
satisfies two-dimensional Laplace equation as
follows.

vip =0

120 (7

Likewise, the linear boundary condition of free

surface is as follows:

94 _

_£+g dy

=0 ,y=( (8)
The boundary condition of the sea-bottom

surface is as follows.

0¢

ay =0

,y—>r—oC

)

The far field boundary condition is as follows.

| vl -0, (10)

at |z |—oo

The initial condition is as follows.

,y=0 ,t<0 ap

3. Mathmatical formulation and the
method of numerical computation.

3.1 The linear solution within external domain

The Green function is same as below when 2z
is multiplied on both sides by wusing two-
dimensional transient Green function of Wehausen
and Laitone{8] and substituting &(¢— 7} for source

strength for numerical matching.

(P, Q. t—0)= Re[ &(t—D)log(P— Q) + Rel 81~ Dlog(P— Q)
~2gH(t~DRe |, 7%‘; e P Vgin[V gk t— )] dk

(12)

Green function G(PQt- 1) is satisfied at

boundary condition as same as in equation (8) ~
(11).
identity for Green function and the property of

It follows by using the Green’s second

the Delta function.

2n4(P, 0 = [ ar [ as(s-20 634 a3)

The velocity potential ¢ satisfies condition as

follows on the matching surface.
o=¢, &,=¢, on the matching surface (14)

The computation field is illustrated in Fig. 1.

A
|
. S; .
T i
\\ w /
\ B
\ n
\\‘;, Nonlinear Domain /

~s,.

Linear Domain

Fig. 1 Coordinate System and Domain Definition

When integration by part is executed for z by
using the free surface boundary condition and
far field boundary condition about the Green
function in equation (13). The equation of (13) is
expressed as follows.

21(P, ) = fdrf as(p-9E—c2¢) a3

The equation of (15) should be substituted for
matching with the Cauchy’s theorem in the
nonlinear domain. The Cauchy-Riemann relation
is as follows.

09 _
on

9¢

35 (16)

It is as follows when the second term is done
integration by part for s by substituting (16) in (15)
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27rq5(P,r)=fdrf dS(¢——— "")+f dr [G¢l¥,
(17)

sl and s2 are intersection point of a matching
boundary and a free surface in (17). The first
term on the right hand side in (17) is the form
of space integral and time integral about normal
dipole and tangential dipole on the matching
boundary, and the second term in sl, s2 is the
form of time integral about point source. First of
all, G is divided Gr of the singular part into Gw
which is discribing the memory effect of free
surface, and let (12) substitute into (17), then it
is possible to get the matching matrix. The
segment of dS is discritized as line element and
the time integrations of ¢ and ¢ make use of
the simpson rule. The line integrals with the
first and second term in relation to equation (12)
are expressed as follows in (17).
J, ks =ttan {7 {2y ()
Js o 5= Rellog(@— P)', + Rellog(@-P)I'*,
(19)

The first term of (18) get z value when 1
equal to j. It is well known that Gw of (12) is
expressed by the Error function[9].

Gy=Rel—2g fowdke - Dgin [V gk(t — )] = A= Xe¥erf(X)

2 _ ig(t-—r!z
== @0

For the moment, let the harmonic Green
function of (12) in relation to Gw represent f = fr
+ ift. When the Cauchy-Riemann relation is
used, the integral calculation regarded of Gw of

(17) is same as below.

f Gw ofg
5

- ds= [ Sras=— [ di=f(P. Qut~ 9~ £(P, Q1.0

(21)

G e - o - Q
CGds= [ Ras=— [ dfe=ta(P. Q1 t- O —fa(P. Q. D

(22)

The Error function is expressed by using
ascending series and asymtotic expansions [10].
Resultly, the time integral calculation is executed
as follows.

Ascending series( X<1)

J.l“ drA—Xe erf(X)=8 ZTTSZE%W (23)

Asymtotic expansion( X>>1)

! 1l S (=1N™-:3-5-:-C2m-1)
Xe*erf(X) = mz:o @)™ " (24)
arg(X)<%

tas o = el — m . . e . -
f‘. e A XeXerf(X) = (1 + > —(—lLL—1—5——(2’“——11(2x)m ]

].‘-3f<ang(X)<T’r

Py Ed I
+4flog X+ Z}l Zm(ZX)"' .

(25)

- (2m—1) 1+

3 (—l)ml'3'5"
Alog X+ 2 RESS Vil B 155 T"<anz(X)<54£

2m(2X)"

(26)

3.2 The solution of nonlinear doamin

In order to give an account of motion of fluid,
the complex potential which is made by
Bz, =0(x, v )+ ¥x, 58 is introduced.

O(x, vt), Wx,yt) are satisfied by The
Cauchy-Riemann relation in fluid field so that is
analytical. Hence, it is possible to apply the
Cauchy’s theorem.

g, —“ZZ%L?—dz—O @D

7z 1s in the outside of closed boundary C
within fluid. C is consisted of the free surface,
body surface and matching surface. From time
@ is known in the free surface
boundary side( Cp), and (5),

integral (2),

¥ is kown in the
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solid boundary side( Cy). The relative equation

of @ and ? is given in the matching boundary
Cy). When (27) is taken a real and
imaginary part with zo of C, it is possible to get

side( Cp or

the Fredholm second integral equation as follows.

a¥(xy,vgit) + Rel gilzwd 1=0 (28)
,for z5 on Cq
. +1
a@(xo, yo;t) + Im[l ¢ f iy dz ] = (29)

,  for zo on Cp

a 1s solid angle between two tangent line, zo to
C. In order to slove unkown values, @ and 2, let
those divide into zx about integral boundary(C),
and @ and ¥ assume the linear variation of
complex potential on line segment. Concerning
about the progress of matrix calculation, Chapter
3.3 gives help for reference. For the computation
of the next time step, a body surface position, a
fluid particle position on the free surface and a
velocity potential shoud be decided. The position
of body surface is given by solving the equation
of motion, or is able to know from forced motion
mode, and the stream function is given from (5),
and the position of fluid particle and the velocity
potential of the free surface are obtained by time
integration from (2) and (3). For the time
integration of (2) and (3), the initial four steps
make use of the method of fourth-order Runge
Kutta, and the time steps after those make use of
the method of
predicted/corrector. The velocity computation of a

Hamming's  fourth-order

fluid particle on the free surface is obtained as the
concept by the centeral difference.

3.3 Matrix Computation of the Linear and
Nonlinear Solution

¢

nonlinar domain,

is unkown on a body surface in the

¥ 15 unkown on a free surface
and @, ¥ are both unkown on the matching
o is (27) by

boundary. When substituted

_89_A

p

is unkown. The matching condition is same as

making relative formula of @ and ¥ in (17)

(14) on a matching boundary. It is as follows
when (15)
applying (14).

is expressed as matrix form by

L@ = 1A TBI @+ | AT Cl Pspu | AL CY Py | ALY C
=lal A+] el Tnar i cd Tt | d

(30)

N1+1

intersection point on the free

and N2 are element numbers of
surface and
(30)

relation of velocity potential and stream function,

matching surface. The equation of is
and the linear free surface boundary condition is
satisfied on a matching surface. When (28) and
(29) are discritized as line segments, the matrix

forms are shown as follows.

O+iy

ZZy

dz) = Rel 311 (0, +i¥)] =0

for z, on Ca

Re[

(3D
Relil -2+ do)) = Reli ;gfm(a)j +i¥)]=0 (30

for z, on C

N3 is total element number and correlation

function , I' ,, is as follows.

N = Zy—2; L log 2, — 2y Zy—Zjy) Zi41 "2
4 Zi—Zj- Zj-1— 2y Zi—Zi4 Zj— Zy

The matrx equation with the linear domain is
derived by using (30) of the matching condition
according to boundary. It is as follows when
replacing (30) with (31) and (32).

(—ImI ;+Rel\ ja, |+ Rel\ ja,  +
(~Iml, . +Rel} \a,,

© +Rel vian )8+
tRelqay;+ + - - +Rely nvsan ) ¥+

(=ImPy q +Rel @y i+ Rel st ¢+ +Relnvian ) ¥ +

R?Fx 1\_]mrkm)w\+iRprk/~l/\’l$l ImIy s V¥~
:; Iml, ¥, + ﬁ: Rel, 0, 2 Rel, @, + 2 Iml, @,
~ ZRels d,
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where zx is on Cp (34)

(=Rel, | —Iml, ja, ,— Iml ,a,,+ *+ *
(=Rel ,—Iml, ja,,—Imly @z, + - - -

(—Rel ny—Iml, ja) & — 1m0 2y g+ -

s =Iml @ )8+
—Iml peizn ) ¥ t

s = Imb g eam ) Pt

(f Imly <o 00— Rels ) ¥o+( {:*Imﬂ Chomet— Rely ms ) ¥me)—

. AizReI‘,, - 2 Iml', 0, 2? ImI‘,,(D*-y HRen,rzr
I,
=1
where zx is on Cy (35)
3.4 Hydrodynamic Force and Moment
When %? is substituded in the Green's

second identity instead of ¢, the equation of (17)
is possible to replace as follows, as it is satisfied
with (7) ~(11) in the linear field.

270(P, 0= [z [ as(s %
(36)

Bz, =0 x, %D+ ¥{x, D is the harmonic

function in the linear field, so that it is as

follows by using the Cauchy’s theorem.

§C

In equation (36), when ¢, is substituded in
(37), the matrixs of the same form (34) and (35)
are deduced. In matrix equations which are equal
(34) and (35), let ¢, and ¢, convert instead of

_Bizt)

(z—zy)

dz=0 37

® and ¥. ¢, is unkown on a body surface, ¢,
1s unkown on a free surface, and ¢, and ¢, are
unkown on the matching surface. The boundary
conditions in ¢, and ¢, to obtain hydrodynamic
force are as follows.

00

ot (v —yglay, — {(x —xpay, — %‘Rzﬁ-i—uov —Vou

+[ (g — w)(x— xq) + (v — V)N ¥y~ y)16

on the body boundary (38)

—9 %5+ [larteul®,

-%ti) = % ww'—gy ,on the free surface (39)
[ mt]=[ ¢t]7 [ w{]z[ ¢’c] P
on the matching boundary (40)

By using (38) ~(40), when (36) is compared
with (17), left hand side matrix is not changed,
only right hand side matrix 1s changed. It is
possible to get ¢, by solving the matrix once
more. The hydrodynamic force and moment is
obtained from the Bernoulli equation.

a0 1 .
F= f D ndS—-lpf[ +2ww]n dS+ (41)
/pf[ at+ ww]ndS
F= fp[—(y veInd + (x — xg)n,il dSV—mf [*‘*+éww}

(y— y()nd5+fpf[ +~wu “Wx—-xin,dS

(42)

4. The Simple Harmonic Forced-
Oscillation

4.1 Calculation of Submerged Circular Cylinder

The hydrodynamic force on a cylinder is
computed when a submerged circular cylinder
does the forced harmonic motion. It is in case
that the body moves by mode of y=-Acos(wt),
and the hydrostatic force by static pressure is
ignored in this computation. As computation
example, there is a submerged circular cylinder
which does heave or sway oscillation. It is the
that

Ka(=w’'R/g) is 1, and the distance from center of

case nondimensional wave frequency
cylinder to a matching boundary is 2.3 times of
wave length. The numbers of element in one
wave length are 26 and it does time progress for
5 periods. Fig. 2 shows the wave form of the
of Kgr=1, h/R=13, Az/R=025. When

observing the waves precisely, The nonlinear

case

wave 1s occurred near a circular cylinder. This
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method is possible to do stable numerical

nonlinear hydrodynamic force is smaller than the
analysis, and the waves almost does not reflect

case of heave oscillation and the force of
y-direction is shown. The period of y-
force is about 1/2 of that of
x~-directional force, the reason is due to a effect

of velocity square term in the Bernoulli equation.

although the waves reach on the matching
boundary. The computation is impossible to be directional
progressed if the regridding technique does not

use. Fig. 3 is the case of Kg=l, WR=13,

Ay/R=0.1, 0.25.
-
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Fig. 5 Time History Forces for Swaying Circular
. lind der F Kr=1, /R=2
Fig. 3 Time History Forces for Heaving Circular Cylinder under Free Surface(Ks )
Cylinder under Free Surface(Ks=1, h/R=1.3) , )
Y 4.2 Calculation of Foating Circular Cylinder
Fig. 4 is a computation of Kg=1, h/R=2.,
Az/R=2. in case that the submerged circular
cylinder does sway oscillation, it shows the

configuration that the wave after 3 period is

The wave profile and hydrodynamic force are
computed when a circular cylinder does forced

harmonic motion. The time integrations are

breaking, and the computation is broken when
breaking and over turning waves reach the
matching boundray. Fig. 5 shows the hydrodynamic
forces in case of Kg=1, /R=2., As/R=04, 2. In

case of sway oscillation, it shows that a

proceeding to six periods on the case that a
circular cylinder moves mode of y=Asin(wt), and
the distance from center of cylinder to the
matching boundary is 3.18 times of wave length.

The numbers of mesh per one wave are 25. The
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computation of a heaving or swaying cylinder is
executed as changing nondimensionalized wave
frequency and the ratio of amplitude. Fig. 6
compares the results concerning about the Kgr=1,
A¥/R=0.1 with the results of Faltinsen[2]. It
shows that a result of computation of the initial
moment accords with the result of Faltinsen
comparatively. In order to examine the effect by
the matching boudary, Fig. 7 compares the
hydrodynamic force about distance effect from
of the rectangular the

matching boundary(=2.86, 3.5). As a result, it is

center cylinder to
estimated tpat the matching is working well in
case that matching length is long. Because it is
matching with linear solution, it is impossible to
be a exact matching when nonlinear waves

reach on the matching side.
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Fig. 6 Time History Force for Heaving Circular
Cylinder (Kg=1, Av/R=0.1)
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Fig. 8 shows the wave form in case of the
ratio of amplitude is 06 and Fig. 9 shows
hydrodynamic force in case that amplitude is 0.1,
0.4 and 0.6. When the ratio of motion amplitude
is getting large, nonlinear effect in equilibrium
position is especially getting large, and the

nonlinear effect in the initial transient state is

prominant.
13
m
v
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£ 8
:.
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B e
-20 -15 -0 -5 0 5 10 15 20
x/R

Fig. 8 Wave Profile Generated by Heaving
Circular Cylinder (Kr=1, As/R=0.6)
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Fig. 9 Time History Force for Heaving Circular
Cylinder (Kg=1)

When

Fourier transformation, it is possible to obtain

the hydrodynamic forces are done
the time mean force component, first harmonic
force component and second harmonic force
component. If the motions reach in the steady
state, 1t should compute more than three periods
at least. As a uncertainty of solution by the
is

linear matching considered, The Fourier

transform 1s chosen by the fifth period of
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the
component of hydrodynamic force from these
procedure, with the result of Ursell[11], and the
experimental value of Yamashita. Fig. 10 is a

hydrodynamic force. It 1s compared

figure about the added mass when the number
of wave are changing. it is getting a little larger
than the result of Ursell, and the value of
Ay/R=04 is larger than that of AyR=02. In Fig.
11, the damping coefficeint has a difference with
the result of Ursell when the ratio of amplitude
is getting large. Resultly, the nonlinearity by
motion is getting large. Fig. 12 shows the time
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793,

mean force coefficient. It accords with the result
of Ursell. Fig. 13 is amplitude of the second
harmonic force component, it also accords with
the result of Ursell. The value 1s a little larger
A3/R=0.2 than the case of Ay/R=0.4. Generally,
the present calculation are accorded with the

experiment.
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Fig. 12 Heave Time Mean Force Coefficient of
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Fig. 13 Heave 2nd Harmonic force Coefficient of
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Concerning of the computation of swaying
circular cylinder, it computes hydrodynamic force
and wave profile according to wave frequency.
When the
imposed in itersection point of free surface and
body surface, it has difficulty to have logarithm
singularity. In this computation, the position of

linear free surface condition is

intersection point is extrapolated from free
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surface in order to process numerically, and the
boundary condition from the body surface is
adopted. As a result, the computation is very
well proceeded. Fig. 14 shows the wave profile
about Kg=1, A¥R=04. Fig. 15 the
hydrodynamic force this case, hydrodynamic

shows

force 1s quite decreased in 6 periods, the reason
18 the increase of errors which caused by
point the

conservation and the matching of the linear

ntersection not satisfied mass
domain gives effect to numerical solution of the
internal domain. Fig. 16 is hydrodynamic force in
case of Kg=04, Az/R=04. it also

y~directional force. When the ratio of amplitude

computes

and wave frequency are decreased, a y-

directional force is decreased, and a period is
always 1/2 of oscillation period. Fig. 17 shows
the and damping

added mass coefficient

rS

3 e S e
> S S M e e
[ 3{4’4 2
R e N A
>4 SR
— . 7”,...é....mﬂ..,. -
-20 <35 o < 0 § 10 15 20
x/R
Fig. 14 Wave Profile Generated by Swaying

Circular Cylinder (Kz=1, Az/R=04)

Time(sec)

Fig. 15 Time History Force for Swaying Circular
Cylinder (Kg=1, Av/R=04)

coefficient, the added mass is increased when
wave frequency are decreased, and it has a
difference with the result of Frank[12] when it is
increased. The damping coefficient has a result
that the maximun value is a little difference with
the result of Frank.
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ficient of Floating Circular Cylinder

5. Uniformly Translating Cylinder

As the example of computation, it 1S in case
that the circular cylinder and elliptic cylinder
advance horizontally with constant velocity
starting from rest. In advance, a circular cylinder
which is example of Havelock{6] let translate

with the following velocity.
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U(t)=0 ,t<0 (43)
:-UO . t=>(

Fig. 18 is the computation of the wave profile
in case that R is 1. The submerged depth h is 2
and the Froude number about depth is Fn=06.
Fig. 18 shows the configuration that wave is
breaking. It is seen from Fig. 18 that Havelock
does a computation under linear assumption, or
it is the effect of transient wave by suddern
acceleration in t=0. As a result, it let the circular
cylinder by the velocity distribution as follows
accelerate from t=0 slowly.

Ut)y=- 22&[1 —cos(at/Tacc)] ,t<{Tacc (44)

=—Ug , t=Tacc

Let Fig. 19 accelerate to Tacc=10 sec with the
same velocity as (44). In this moment, the waves
are breaking, and the computation is broken
down about t=9.2 sec like the same case Fig. 18.
The reason why the waves are breaking is not
because of transient wave, but because the
model of computation has strong nonlinearity.
For the evidence, when the wave profile is
observed in F»=0.6 in the linear computation of
Kim[13], the ratioc wave height and length is
about 0.35. This proves that present computation
is right because the wave steepness beyond 1/7
makes wave unstable. This shows that physical
phenomenon 1is not aware by the linear
asumption of the free surface.
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Fig. 18 Wave Profile Generated by Uniformly
Translating Circular Cylinder(Impulsive
Start, Frn=0.6, h/R=2)
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Fig. 19 Wave Profile Generated by Uniformly
Translating Circular Cylinder(Smooth
Start, Fn=0.6, h/R=2, Tacc=10 sec)

For the purpose of decreasing the nonlinearity
of the free surface by the cylinder, the elliptic
cylinder adopted as calculation model. It
compares with the higher order spectral method
as changing submerged depth about the Froude
number (FL=0.70117). In advance, it makes
impulsive start such as (43) in case that it is
FL=0.70117, h/L=2. Fig. 20 and Fig.21 show the
wave profile, wave-making resistance and lift by
waves. The transient phenomenon of hydro-
dynamic forces by abrupt start of initial ‘state is
continued, and the shapes of wave also show
irregular phenomenon. In order to deviate
transient phenomenon, the smooth start like (44)
i1s required. Fig.22 and Fig.23 show the wave
profile, wave-making resistance and lift by
waves(FL=0.70117, h/L=2). The wave-making
resistance has a little small value comparing
with the higher order spetral method, and the lift
gives large values. Fig.24 and Fig.25 show the
wave profile, wave-making resistance and lift in
FL=0.70117, h/L=1.7. The shapes of wave are
accorded with Ogiwara's[14] experimental value
and the values of resistance are also accorded
with the spectral method, however, the lift has
present calculation differ a value of the spectral
method. When synthesizing the results, the
wave-making resistance and lift value are

oscillating at mean value even though reaching
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steady state. The reason is that the computation
in time domain is differ from the computation in
frequency domain - the shape of wave behind
the body is fluctuated, and the oscillating period
1s same as the period that wave is formed.

6. Conclusion

This paper develops a numerical method in

time domain to analyize two dimensional
nonlinear motion. The field of computation is
divided into the internal field near body where
the nonlinear free surface boundary condition
and body boundary condition are satisfied
strictly and the external field where the linear
free surface boundary condition and radiation
condition are satisfied. The solution of internal
field is obtained by using the Cauchy’s boundary
the
identity including the transient Green function is

used to obtain the solution of the external field.

integral equation, and Green's second

The matrix equations which come from two
fields above are connected into one matrix
equation applying the matching condition. For
the purpose of validation of computing results,
we compare the present compuation values with
other theoretical and experimental results. Though
this research, the following conclusions are
obtained.

1) In case of heaving oscillation of floating
circular cylinder, the damping coefficient agrees
with the computation value of Ursell but it has a
large difference in high frequency range. The
present calculation result of added mass is a
little larger than that of Ursell. However, it
agrees with the experiment value. The time
mean force and second harmonic force show
good agreement with the calculation-value of
Ursell and the experiment-value of Yamashita.

2) The cross product force in vertical direction

of swaying cylinder is due to the velocity square

term which is nonlinear term of the Bernoulli
equation.

3) In case that a submerged elliptic cylinder
abruptly starts, the transient effect is maintained
for a long time. As a result, long simulation time
is required to obtain the steady solution but in
case of smooth start the steady solution is
stably obtained within relatively short simulation
time. In case of advancing submerged circular
cylinder, the breaking and over-turning waves
are generated when the Froude number is 0.6,
0.8 and 1.
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