DOI QR코드

DOI QR Code

How is the inner contour of objects encoded in visual working memory: evidence from holes

물체 내부 윤곽선의 시각 작업기억 표상: 구멍이 있는 물체를 중심으로

  • Kim, Sung-Ho (Department of Psychology, Ewha Womans University)
  • 김성호 (이화여자대학교 심리학과)
  • Received : 2016.07.10
  • Accepted : 2016.07.18
  • Published : 2016.09.30

Abstract

We used holes defined by color similarity (Experiment 1) and binocular disparity (Experiment 2) to study how the inner contour of an object (i.e., boundary of a hole in it) is encoded in visual working memory. Many studies in VWM have shown that an object's boundary properties can be integrated with its surface properties via their shared spatial location, yielding an object-based encoding benefit. However, encoding of the hole contours has rarely been tested. We presented objects (squares or circles) containing a bar under a change detection paradigm, and relevant features to be remembered were the color of objects and the orientation of bars (or holes). If the contour of a hole belongs to the surrounding object rather than to the hole itself, the object-based feature binding hypothesis predicts that the shape of it can be integrated with color of an outer object, via their shared spatial location. Thus, in the hole display, change detection performance was expected to better than in the conjunction display where orientation and color features to be remembered were assigned to different parts of a conjunction object, and comparable to that in a single bar display where both orientation and color were assigned into a single bar. However, the results revealed that performance in the hole display did not differ from that in the conjunction display. This suggests that the shape of holes is not automatically encoded together with the surface properties of the outer object via object-based feature binding, but encoded independently from the surrounding object.

이차원 표면에 난 구멍은 이를 둘러싼 물체에 의해 경계 지워진 빈 배경임에도 불구하고, 구멍의 모양은 다른 물체만큼 쉽게 지각된다. 즉, 구멍은 전경-배경 조직화의 깊이-형태 간 연결 관계(depth-shape coupling)를 예외적으로 위반하여, 깊이 상으로는 배경임에도 불구하고 형태를 갖는 준-전경적(quasi-figural) 사례처럼 보인다. 구멍의 준-전경적 속성을 지지하는 연구들은 구멍과 물체의 재인율이 유사하다는 기억 과제 결과에 주로 의존하고 있으므로, 구멍 모양의 기억이 지각적 처리에 기반하고 있는지는 불분명하다. 본 연구는 재인 과제보다 즉각적인 지각 처리를 반영하는 변화탐지 과제를 이용하여, 구멍을 경계 짓는 물체의 안쪽 윤곽선이 시각 작업기억에 어떻게 표상되는지 알아보았다. 이를 위해, 물체 내부에 다른 물체가 중첩된 접합 물체 조건과 구멍이 있는 물체 조건에서 안쪽 윤곽선과 바깥 영역의 색에 대한 변화탐지 수행을 비교하였다. 시각 작업기억의 선행 연구들은 형태나 방향과 같은 물체의 윤곽선 속성(boundary feature)이 표면 속성(surface feature)과 함께 통합되어 하나의 물체로 저장됨을 시사한다. 만일 구멍의 경계선이 구멍을 둘러싼 물체에 지각적으로 할당된다면, 이 경계선과 물체의 표면색이 통합적으로 부호화되는 물체 중심적 처리 이득으로 인해, 구멍 자극 조건에서 접합 자극 조건보다 높은 변화 탐지 수행이 예측되었다. 두 실험의 결과, 구멍 자극 조건의 변화 탐지 수행은 접합 자극 조건과 다르지 않았다. 이는 물체 내부의 윤곽선(구멍의 경계선) 속성이 물체의 표면 속성과 통합적으로 부호화되지 않으며, 구멍을 둘러싼 물체와 독립적으로 처리됨을 시사한다.

Keywords

References

  1. 김대규, 현주석 (2012). 기억 항목 간 상이하거나 동일한 세부특징에 대한 저장 요구가 시각작업기억 수행에 미치는 영향. 한국심리학회지: 인지 및 생물, 24(4), 393-410.
  2. Arnheim, R. (1954). Art and Visual Perception: A Psychology of the Creative Eye. Berkeley: University of California Press.
  3. Baylis, G. C., & Driver, J. (1993). Visual attention and objects: evidence for hierarchical coding of location. Journal of Experimental Psychology: Human Perception and Performance, 19, 451-470. https://doi.org/10.1037/0096-1523.19.3.451
  4. Bertamini, M. (2001). The importance of being convex: an advantage for convexity when judging position. Perception, 30, 1295-1310. https://doi.org/10.1068/p3197
  5. Bertamini, M. (2006). Who owns the contour of a hole?. Perception, 35, 883-894. https://doi.org/10.1068/p5496
  6. Bertamini, M., & Casati, R. (2014). Figures and Holes, in J. Wagemans (ed.), Handbook of Perceptual Organization, Oxford: Oxford University Press.
  7. Bertamini, M., & Croucher, C. J. (2003). The shape of holes. Cognition, 87, 33-54.
  8. Bertamini, M., & Farrant, T. (2006). The perceived structural shape of thin (wire-like) objects is different from that of silhouettes. Perception, 35, 1679-1692. https://doi.org/10.1068/p5534
  9. Bertamini, M., & Helmy, M. S. (2012). The shape of a hole and that of the surface-with-hole cannot be analysed separately. Psychonomic Bulletin & Review, 19), 608-616. https://doi.org/10.3758/s13423-012-0265-3
  10. Bertamini, M., & Mosca, F. (2004). Early computation of contour curvature and part structure: Evidence from holes. Perception, 33, 35-48. https://doi.org/10.1068/p5024
  11. Brainard, D. H. (1997). The Psychophysics Toolbox. Spatial Vision, 10, 433-436. https://doi.org/10.1163/156856897X00357
  12. Casati, R., & Varzi, A. C. (1994). Holes and other superficialities. Cambridge, MA: MIT Press.
  13. Chen, L. (1982). Topological structure in visual perception. Science, 218, 699-700. https://doi.org/10.1126/science.7134969
  14. Delvenne, J. F., & Bruyer, R. (2004). Does visual short-term memory store bound features?. Visual Cognition, 11, 1-27. https://doi.org/10.1080/13506280344000167
  15. Delvenne, J. F., & Bruyer, R. (2006). A configural effect in visual short-term memory for features from different parts of an object. The Quarterly Journal of Experimental Psychology, 59, 1567-1580. https://doi.org/10.1080/17470210500256763
  16. Ecker, U. K., Maybery, M., & Zimmer, H. D. (2013). Binding of intrinsic and extrinsic features in working memory. Journal of Experimental Psychology: General, 142, 218. https://doi.org/10.1037/a0028732
  17. Elder, J. H., & Zucker, S. W. (1993). The effect of contour closure on the rapid discrimination of two-dimensional shapes. Vision Research, 33, 981-991. https://doi.org/10.1016/0042-6989(93)90080-G
  18. Feldman, J., & Singh, M. (2005). Information along contours and object boundaries. Psychological Review, 112, 243-252. https://doi.org/10.1037/0033-295X.112.1.243
  19. Grier, J. B. (1971). Nonparametric indexes for sensitivity and bias: Computing formulas. Psychological Bulletin, 75, 424-429. https://doi.org/10.1037/h0031246
  20. Horowitz, T. S., & Kuzmova, Y. (2011). Can we track holes?. Vision Research, 51, 1013-1021. https://doi.org/10.1016/j.visres.2011.02.009
  21. Kennedy, J. M. (1974). A Psychology of Picture Perception. San Francisco, CA: Jossey-Bass.
  22. Kim, S. -H. (in preparation). Attentional selection of closed empty areas in 3D space: Cases of holes and thin objects.
  23. Kim, S. -H., & Kim, J. -O. (2011). The Benefit of Surface Uniformity for Encoding Boundary Features in Visual Working Memory. Journal of Experimental Psychology: Human Perception and Performance, 37, 1767-1783. https://doi.org/10.1037/a0025639
  24. Koffka, K. (1935). Principles of Gestalt Psychology. New York: Harcourt.
  25. Navon, D. (1977). Forest before trees - precedence of global features in visual-perception. Cognitive Psychology, 9, 353-383. https://doi.org/10.1016/0010-0285(77)90012-3
  26. Nelson, R., & Palmer, S. E. (2001). Of holes and wholes: The perception of surrounded regions. Perception, 30, 1213-1226. https://doi.org/10.1068/p3148
  27. Nelson, R., Thierman, J., & Palmer, S. E. (2009). Shape memory for intrinsic versus accidental holes. Perception & Psychophysics, 71, 200-206. https://doi.org/10.3758/APP.71.1.200
  28. Palmer, S. E. (1999). Vision Science: Photons to Phenomenology. Cambridge, MA: MIT Press.
  29. Palmer, S. E., Davis, J., Nelson, R., & Rock, I. (2008). Figure-ground effects on shape memory for objects versus holes. Perception, 37, 1569-1586.
  30. Pelli, D. G. (1997). The VideoToolbox software for visual psychophysics: Transforming numbers into movies. Spatial Vision, 10, 437-442. https://doi.org/10.1163/156856897X00366
  31. Rubin E. (1921). Visuell wahrgenommene Figuren. Copenhagen: Gyldendals.
  32. Treisman, A., & Gelade, G. (1980). A feature integration theory of attention. Cognitive Psychology, 12, 97-136. https://doi.org/10.1016/0010-0285(80)90005-5
  33. Xu, Y. (2002a). Limitations of object-based feature encoding in visual short-term memory. Journal of Experimental Psychology: Human Perception and Performance, 28, 458-468. https://doi.org/10.1037/0096-1523.28.2.458
  34. Xu, Y. (2002b). Encoding color and shape from different parts of an object in visual short-term memory. Perception & Psychophysics, 64, 1260-1280. https://doi.org/10.3758/BF03194770
  35. Zhou, K., Luo, H., Zhou, T., Zhuo, Y., & Chen, L. (2010). Topological change disturbs object continuity in attentive tracking. Proceedings of the National Academy of Sciences of the USA, 107(50), 21920-21924. https://doi.org/10.1073/pnas.1010919108