This paper presents a statistical model for Korean dependency-based parsing. Although Korean is one of free word order languages, it has the feature of which some word order is preferred to local contexts. Earlier works proposed parsing models using modification lengths due to this property. Our model uses headible path contexts for modification length probabilities. Using a headible path of a dependent it is effective for long distance relation because the large surface context for a dependent are abbreviated as its headible path. By combined with lexical bigram dependency, our probabilistic model achieves 86.9% accuracy in eojoel analysis for KAIST corpus, more improvement especially for long distance dependencies.
조건부 분기 명령어(conditional branch instruction)의 잘못된 분기 예측(branch misprediction)은 프로세서의 성능 향상에 심각한 장애 요인이 되고 있다. 특히 시분할(time-sharing) 시스템과 같이 문맥 교환(context switch)이 발생하는 멀티프로그래밍 환경(multiprogramming environment)에서는 더욱 낮은 분기 예측 정확성(branch prediction accuracy)을 보인다. 본 논문에서는 문맥 교환이 발생하는 멀티프로그래밍 환경에서 높은 분기 예측 정확성을 보이는 중첩 분기 예측표 교환(Overlapped Predictor Table Switch, OPTS) 기법을 소개한다. 분기 예측표(predictor table)를 분할하여 각각의 프로세스(process)에 할당하는 OPTS 기법은 문맥 교환의 영향을 최소화함으로써 높은 분기 예측 정확성을 유지하는 분기 예측 방법이다.Abstract There is wide agreement that one of the most important impediments to the performance of current and future pipelined superscalar processors is the presence of conditional branches in the instruction stream. Accurate branch prediction is required to overcome this performance limitation. Many branch predictors have been proposed to help to alleviate this problem, including the two-level adaptive branch predictor, and more recently, hybrid branch predictor. In a less idealized environment, such as a time-sharing system, code of interest involves context switches. Context switches, even at fairly large intervals, can seriously degrade the performance of many of the most accurate branch prediction schemes. In this study, we measure the effect of context switch on the branch prediction accuracy in various situation and show the feasibility of our new mechanism, OPTS(Overlapped Predictor Table Switch), which save and restore branch history table at every context switch.
For real-time systems, multiprocessor support is indispensable to handle the large number of requests. Existing real-time on-line scheduling algorithms such as Earliest Deadline First Algorithm (EDF) and Least Laxity Algorithm (LLA) may not be suitable for scheduling real-time tasks in multiprocessor systems. Although EDF has low context switching overhead, it suffers from "multiple processor anomalies." LLA has been shown as suboptimal, but has the potential for higher context switching overhead. Earliest Deadline Zero Laxity (EDZL) solved somewhat the problems of those algorithms, however is suboptimal for only two processors. Another algorithm EDA2 shows very good performance in overload phase, however, is not suboptimal for muitiprocessors. We propose two on-line scheduling algorithms, Earliest Deadline/Least Laxity (ED/LL) and ED2/LL. ED/LL is suboptimal for multiprocessors, and has low context switching overhead and low deadline miss rate in normal load phase. However, ED/LL is ineffective when the system is overloaded. To solve this problem, ED2/LL uses ED/LL or EDZL in normal load phase and uses EDA2 in overload phase. Experimental results show that ED2/LL achieves good performance in overload phase as wet] as in normal load phase.oad phase.
To enhancing the exercise effect, exercise management systems are introduced and generally used. They create the proper exercise program through exercise prescription after determining the personal body status. When the exercise programs are created, they will consider $2weeks{\sim}3months$ period. And, existing exercise programs cannot respect with personal exercise habits or exercise period which are changing variedly. If exercise period is long, it can be caused inappropriate exercise about user current status. To solve these problems in legacy systems, this paper proposes a Context Aware Exercise Model (CAEM) to provide the exercise program considering the user context. Also, we implemented that as Intelligent Fitness Guide (IFG) System. The IFG system is selectively received necessary measurement values as input values according to user's context. If exercise kinds, frequency and strength of user are changing, that system creates the exercise program through exercise optimization algorithm and exercise knowledge base. As IFG is providing the exercise program in a real time, it can be managed the effective exercise according to user context.
KIPS Transactions on Software and Data Engineering
/
v.7
no.7
/
pp.259-266
/
2018
In this paper, we propose a method to classify a document using a Recurrent Neural Network by extracting features considering word sense and contexts. Word2vec method is adopted to include the order and meaning of the words expressing the word in the document as a vector. Doc2vec is applied for considering the context to extract the feature of the document. RNN classifier, which includes the output of the previous node as the input of the next node, is used as the document classification method. RNN classifier presents good performance for document classification because it is suitable for sequence data among neural network classifiers. We applied GRU (Gated Recurrent Unit) model which solves the vanishing gradient problem of RNN. It also reduces computation speed. We used one Hangul document set and two English document sets for the experiments and GRU based document classifier improves performance by about 3.5% compared to CNN based document classifier.
Lexical ambiguity means that a word can be interpreted as two or more meanings, such as homonym and polysemy, and there are many cases of word sense ambiguation in words expressing emotions. In terms of projecting human psychology, these words convey specific and rich contexts, resulting in lexical ambiguity. In this study, we propose an emotional classification model that disambiguate word sense using bidirectional LSTM. It is based on the assumption that if the information of the surrounding context is fully reflected, the problem of lexical ambiguity can be solved and the emotions that the sentence wants to express can be expressed as one. Bidirectional LSTM is an algorithm that is frequently used in the field of natural language processing research requiring contextual information and is also intended to be used in this study to learn context. GloVe embedding is used as the embedding layer of this research model, and the performance of this model was verified compared to the model applied with LSTM and RNN algorithms. Such a framework could contribute to various fields, including marketing, which could connect the emotions of SNS users to their desire for consumption.
Proceedings of the Korean Society for Cognitive Science Conference
/
2000.06a
/
pp.292-299
/
2000
본 논문에서는 개체명 사전과 결합 단어 사전, 그리고 용언의 하위범주화 사전을 이용하는 규칙기반의 한국어 개체명 인식 방법을 제안한다. 각 규칙은 네 단계로 나누어 적용하는데, 첫번째 단계에서는 어절 내의 단어 정보를, 두번째 단계에서는 제한된 주변 문맥 정보를, 그리고 세번째 단계에서는 용언의 하위범주화 정보와 개체명과의 관계를 이용하고, 마지막으로 네번째 단계에서는 개체명 간의 관계 정보를 고려한다. 본 논문에서 제안한 규칙 기반 개체명 인식기의 성능을 평가하기 위해 실험한 결과 90.4%의 정확률과 83.4%의 재현율을 얻었다.
Proceedings of the Korean Society for Cognitive Science Conference
/
2000.06a
/
pp.68-75
/
2000
상대방에게 의사를 전달할 때 보다 정확하게 자신의 의도를 표현하려면 대화의 흐름에 맞는 적절한 억양을 주어 발화해야 한다. 본 논문에서는 결함범주문법을 이용하여 문장을 분석하고 문장 내 정보와 문장 간 정보 즉, 문맥에 따라 강세(pitch accent), 휴지(pause), 강조 등의 억양정보를 어떻게 나타내야 하는지를 분석하여 문장의 정보구조에 추가하는 방법을 제시한다.
With the popularization of a World Wide Web (WWW), the quantity of web information has been increased. Therefore, an efficient searching system is needed to offer the exact result of diverse Information to user. Due to this reason, it is important to extract and analysis of user requirements in the distributed information environment. The conventional searching method used the only keyword for the web searching. However, the searching method proposed in this paper adds the context information of keyword for the effective searching. In addition, this searching method extracts keywords by the new keyword extraction method proposed in this paper and it executes the web searching based on a keyword mining profile generated by the extracted keywords. Unlike the conventional searching method which searched for information by a representative word, this searching method proposed in this paper is much more efficient and exact. This is because this searching method proposed in this paper is searched by the example based query included content information as well as a representative word. Moreover, this searching method makes a domain keyword list in order to perform search quietly. The domain keyword is a representative word of a special domain. The performance of the proposed algorithm is analyzed by a series of experiments to identify its various characteristic.
Place recognition is necessary for a mobile user to be provided with place-dependent information. This paper proposes real-time video based place recognition system that identifies users' current place while moving in the building. As for the feature extraction of a scene, there have been existing methods based on global feature analysis that has drawback of sensitive-ness for the case of partial occlusion and noises. There have also been local feature based methods that usually attempted object recognition which seemed hard to be applied in real-time system because of high computational cost. On the other hand, researches using statistical methods such as HMM(hidden Markov models) or bayesian networks have been used to derive place recognition result from the feature data. The former is, however, not practical because it requires huge amounts of efforts to gather the training data while the latter usually depends on object recognition only. This paper proposes a combined approach of global and local feature analysis for feature extraction to complement both approaches' drawbacks. The proposed method is applied to a mobile information system and shows real-time performance with competitive recognition result.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.