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Abstract  For real-time systems, multiprocessor support is indispensable to handle the large
number of requests. Existing real-time on-line scheduling algorithms such as Earliest Deadline First
Algorithm (EDF) and Least Laxity Algorithm (LLA) may not be suitable for scheduling real-time
tasks in multiprocessor systems. Although EDF has low context switching overhead, it suffers from
“multiple processor anomalies.” LLA has been shown as suboptimal, but has the potential for higher
context switching overhead. Earliest Deadline Zero Laxity (EDZL) solved somewhat the problems of
those algorithms, however is suboptimal for only two processors. Another algorithm EDAZ shows very
good performance in overload phase, however, is not suboptimal for multiprocessors. We propose two
on-line scheduling algorithms, Earliest Deadline/Least Laxity (ED/LL) and ED2/LL. ED/LL is
suboptimal for multiprocessors, and has low context switching overhead and low deadline miss rate
in normal load phase. However, ED/LL is ineffective when the system is overloaded. To solve this
problem, ED2/LL uses ED/LL or EDZL in normal load phase and uses EDAZ in overload phase.
Experimental results show that ED2/LL achieves good performance in overload phase as well as in
normal load phase.

Key words : real-time scheduling, multiprocessor, ED/LL (Earliest Deadline / Least Laxity),

ED2/LL
1. Introduction As Internet becomes part of our daily life, web-
based systems must be able to provide multimedia
*o] AT zooza}wi gt RetaTHlel AYos AR, support to handle the rich data types in many web
Y R ARARERE AREASds as applications. Multimedia tasks must meet their
sjcho@dku.edu . ) . ) .
wmAs : oo0zd 39 189 application deadlines, or the output is considered a

ANgE 20029 109 149 low quality (e.g. unstable video playback) or im-
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possible to use (eg. incorrect sound pitch). To
guarantee a better real-time performance, many
systems have utilized more computing resources
(CPU) to handle a higher workload. Multiprocessor
architecture thus has become very common for web
servers. However, real-time scheduling on multi-
processor systems is a challenging problem. A real-
time system with two processors may not produce a
performance twice as good as a single processor
system. In this paper, we study the problem of
on-line scheduling algorithms for real-time tasks on
multiprocessor systems, and provide a good solution
to the problem.

In real-time systems where the release times of
tasks are sporadic, there may be time intervals during
which it is impossible to meet all task deadlines due
to critical or exceptional conditions. A system is said
to be in the overload phase during an interval I, if it
is impossible to meet all the deadlines of ready tasks
during the period I. Otherwise, it is said to be in the
normal load phase. Because of the stochastic nature
of the release times of sporadic tasks, it is impractical
to eliminate overload situations in large and dynamic
systems by means of system or application design
methods[1]. Therefore, designing effective scheduling
algorithms for overload phases as well as for normal
load phases is important to the construction of
realistic real-time systems.

Any scheduling decision will affect the set of ready
tasks in the near future, since it determines which
tasks are executed and which tasks are not. A current
scheduling decision of executing less urgent fasks
may cause unnecessary overload phase in the future.
Therefore, finding an effective scheduling algorithm
for normal-load phase is critical to the overall success
of real-time scheduling. When a system goes into an
overload phase, a different goal should be pursued:
more important tasks should be executed first to
handle the emergency rather than trying to meet the
deadlines of all tasks[1,2,3,4].

Recently, there has been an increasing demand for
multiprocessor support in the systems like as web
server systems. However, few satisfactory on-line
real~time tasks in

scheduling algorithms for

multiprocessor systems have been found. Two
well-known algorithms, Earliest Deadline First
Algorithm (EDF)5] and Least Laxity Algorithm
(LLA)6, 7], have been shown to be optimal in
uniprocessor systems. In multiprocessor systems,
EDF has a low context switching overhead, but it can
produce arbitrarily low processor utilization since that
deadline miss ratio is high under EDF[4,8]. LLA is
shown to be suboptimal (see section 2.2 for the
definition of suboptimality), but it is impractical due
to high context switching overhead in multiprocessor
systemsl9,10]. To solve the problems of EDF and
LLA - algorithms, Earliest Deadline Zero Laxity
(EDZL) algorithm has been proposed to support
real-time scheduling on multiprocessors [11]. EDZL
has advantages from both EDF and LLA. It schedules
tasks with both deadline and laxity values of tasks.
The EDZL has low context switching overhead and
low deadline miss rate. But it is not suboptimal for
three or more processors, and does not show good
performance in overload phasef11]l. Another algorithm
EDA?[11] schedules tasks based on the deadline, and
examines the laxity value of every task as time
advances. If there is any task with negative laxity,
EDAZ2 removes the task from system. EDA2 shows
very good performance for multiprocessors when the

system is overloaded, even though it is not
suboptimal.
In  this paper, we first present Earliest

Deadline/Least Laxity (ED/LL)
solves the problems of existing algorithms. Like as
EDZL, ED/LL is also a hybrid algorithm of EDF and
LLA. We will show that ED/LL is suboptimal for
multiprocessors  like LLA. ED/LL has good
performance in meeting the deadlines of tasks, while

algorithm which

the nismber of context switches is smaller than LLA.
However, it is not effective in overload phase. To
solve the problem, we also propose an adaptive
real-time scheduling algorithm EDZ2/LL that uses
ED/LL or EDZL in normal load phase, but uses EDA2
in overload phase. ED2/LL shows good performance
irrespective of the system load level.

This paper is organized as follows. In section 2, we
describe existing on-line scheduling algorithms and
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task model. Sections 3 and 4 present the new
algorithms ED/LL and ED2/LL respectively. Section 5
evaluates the proposed algorithms and compares with
the existing ones. In section 6, we conclude our work.

2. Background

2.1 Related Work

There has been much research on on-line
scheduling algorithm based on EDF. Chetto{12]
studied the localization and duration of idle time
interval in EDF, and proposed the algorithm that
utilizes the idle time duration to schedule hard
real-time sporadic tasks. Jeffay[13] proposed an
optimal algorithm that schedules tasks with shared
resources on one processor, based on EDF. Baruah{2,3]
derived an upper bound that can be derived an upper
bound that can be achieved when tasks with different
value densities are scheduled on one processor in
overload phase, and proposed an algorithm D*, an
extended on-line algorithm from EDF. D#* has similar
with Best Effort (BE)
proposed by Locke[4], but guarantees to achieve

performance algorithm
lower bound on any condition.

Baruah et al. have achieved some positive result in
scheduling[14,15,16],
Dertouzos(6] analyzed the performance of EDF and
Anand and Sanjoy(8]
proposed an EDF-based multiprocessor algorithm for

real-time multiprocessor

LLA on multiprocessors.

scheduling periodic task systems, and proved that the
algorithm schedules any periodic task system with
utilization ( m*/(2m-1) on m identical processors. At
the same time, they pointed out that EDF is not
optimal on multiprocessors. As discussed briefly in
Section 2.3, Cho et al. {11] presented two real-time
EDZL. and EDAZ on
multiprocessors. EDZL is a suboptimal scheduling

scheduling  algorithms
algorithm for two processors, and EDAZ provides a
good overload handier. In this paper, we propose two
scheduling algorithms that can substitute for LLA
and EDZL in multiprocessor systems.

2.2 Task Model and Suboptimality

A ready task is defined as a task which has been
released before or at the current time, and is yet to be
completed, while a future task is a task which has not
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vet been released. A ready task running on a
processor is called a current task. A schedule S is
said to be valid for a set of tasks if and only if every
task deadline is met in S. A set of tasks is said to be
feasible on m processors if and only if there exists a
valid schedule. A set of tasks is said to be
schedulable under a scheduling algorithm @, if ©Q can
generate a valid schedule for the set of tasks.

A scheduling algorithm is said to be optimal if
every feasible set of tasks (both ready and future
tasks) is schedulable under ©. A scheduling algorithm
is said to be suboptimal if every feasible set of ready
tasks is schedulable under Q. The difference between
optimality and suboptimality is whether future tasks
are considered or not. One major assumption of
on-line scheduling systems is that the release times
available beforehand. This

assumption forces the scheduler to make a decision

of tasks are not
based on the ready tasks, not based upon the
prediction of what tasks will be released in the near
future. This brings us to the suboptimality of a
scheduling algorithm as a criterion.

Our system model depends on the following
assumptions:

1. each task in the task set is aperiodic,

2. each task consists of only one job,

3. the deadline and the computation time of a task

are given when the task is released,

4. the tasks do not communicate or synchronize

with each other, and

5. the tasks can be preempted at any point in the

computation.

To schedule a task set meeting these requirements,
we use a priority, preemptive scheduler, A task T is
represented by a two-tuple (¢, dJ, where ¢ is the
remaining computation time required to complete ¥
and d is the deadline relative to the current time. The
computation time and deadline for T; vary as T is
executed and as time advances. The laxity of a task
1=(c, d) is defined by d~¢. The laxity value of a
task is often viewed as a measure of urgency. A
negative laxity indicates that a deadline will be
missed. Note that the deadline values of ready tasks
are independent of scheduling decisions, while the
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laxity values of the tasks are changed by scheduling
decisions.

2.3 EDZL and EDA2 Algorithms

EDZL algorithm [11] is shown in Figure 1. EDZL
first checks if there is an urgent task (i.e. task with
zero laxity). If every task has a positive laxity, EDZL
is performed in the same way as EDF. When a task
with zero laxity occurs, however, it is dispatched
promptly by preempting the task with positive laxity
among current tasks. If the number of the processors
is larger than the number of the zero laxity tasks,
EDZL then tries to dispatch the tasks with earlier
deadline to the processors that are not assigned to the
tasks with zero laxity. That is, there may be the case
under EDZL that some processors execute the tasks
with zero laxity and the other processors execute the
tasks with a positive laxity and an earlier deadline. If
the number of tasks with zero laxity is larger than
the number of processors, the system removes some
of the tasks that cannot be dispatched. As we can
EDZL
processors, but not suboptimal on more than two

know from [11], is suboptimal on two
processors. For example, consider a set of ready tasks
{(2,2), (2,2), (4,5), (4,5). (1,4)}, which is schedulable on
three processors under LILA. Under EDZL, the set of
tasks is not feasible: {(2,2), (2,2), (45), (45). (14} —
LD, A, 44, 4dh — {(33), 43)): ... The
system is in overload phase at the time ti;. Another
disadvantage is that EDZL is not suitable for the

overload phase.

Algorithm EDZL

1 while TRUE do

2 while there is any ready task with zero laxity in the queue do

3 if the laxity vaiues of all the current tasks are zero then

4 remove the ready task from the system

5 else

6 preempt the current task with positive laxity and
dispatch the ready task with zero laxity

7 endif

8  endwhile

9 if there are i CPUs assigned to the tasks with positive laxity then

10 dispatch i tasks with earlier deadline to the i CPUs

11 endif

12 wait for next schedule event  // the current tasks are running

13 endwhile

Fig 1 Earliest Deadline Zero Laxity Algorithm (EDZL)

Al2d 2 ol2 A 20 A A 11 E(200212)

Algorithm EDA2
1 While TRUE do
2 while there is a task with negative laxity do
3 remove it from the system
4 endwhile
5 dispatch m tasks with earlier deadline to all m-CPUs
6 wait for next schedule event
// the current tasks are running
7 endwhile
Fig 2 EDAZ algorithm
Another algorithm EDAZ achieves a good

performance in overload phase [11]. Figure 2 shows
the description of EDA2 algorithm. Under EDF, a task
with negative laxity value may remain in the system
because EDF considers only the deadline of each task
but does not consider the laxity value. So, the task to
fail finally may waste processor time, which could
degrade the performance of the overall system. (See
table 1 and 2.) To solve the problem, EDA2 examines
the laxity value of each task at every scheduling
point, and removes immediately the tasks with
negative laxity from the system. EDAZ then executes
at any time as many as possible up to m tasks whose
deadline is the closest for m-processor systems. Even
though there is a task with zero laxity, the task with
the closest deadline has the highest priority under
EDAZ while the zero laxity task has the highest
priority under EDZL. EDA2 is the same as EDF
except that EDA2 can remove the tasks with a
negative laxity at each scheduling point. Like EDF,
the shortcoming of EDAZ2 is
multiprocessors either as shown in Table 1. The set
of ready tasks {(57), (46), (79)}, which is feasible
under LLA and EDZL, cannot be scheduled by EDF
and EDAZ on two processors.

Generally EDA2 can achieve a good performance in

not optimal on

overload phase under multiprocessors while EDZL
and LLA show better performance in normal phase.
Table 2 shows the scheduling stages of the set of
tasks {(2,3), (35), (24), (44), (3,3), (44), (25)} at time
to on three processors. The number of tasks that meet
their deadlines is 3 under EDF, 4 under LLA and
EDZL, and 5 under EDAZ, respectively. EDZL and
LLA show also comparative performance because

they remove the task with non-positive laxity which



GEAPN A2 HERAA AFATE F/E AT 2AEY 7

zz

Table 1 A scheduling example on two processors
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time LLA EDZL [ EDF 1 EDA2

w 57 (48) (79)

b (46)(35K78) (46)35K78) (46)35XT) (46)35)(78)

t (35346, 35T 35N24NTD BHN2ANTD

& BAR3EH (BUIN6H) EHUINTH) 20,(76)

& (33)(1,2145) (3302)(5,5) (1350275 (102 Fail

ts 210,144 @ ub ©D (64 ©2

ts D 33 33) 5.3) ]

Table 2 A scheduling example on three processors

time EDF EDAZ LLA and EDZL
| $23) (35 (24) (44) (33) (44) (25) | (23) 35 (24) 44) B3) 44) 25) | (23) B5) 24) U4 (33) (44 (25)
i ] 12 (34) (13 (43) (22) (43) 24 | LD B4 (L3 (43) 22) (43 24) | 22) 84 23) (33) 22 B3 24
2 Suce (3,3) succ (4,2) (L,1) (4.2) (23) | suce (33) succ Fail (1,1) Fait (23) | Fail (3,3) (22) (22} (1.1} 22} (2.3
3 3,2) (3,1) suce 3,1) (2,2) (2,2) suce (1,2) Fail Fail (1,1) succ (1,1) (22)
t4 [AY! 2,0 @20 21 an suee suce suce (1,1)
5 ao Fail Fail {40 Suce suce
LJG Fail Fail

cannot be dispatched just in time. EDF shows the
worst performance in overload phase on multi-
processors since it schedules the tasks whose
deadline will be missed and wastes the processor time

on them.
3. ED/LL Algorithm

From section 2, we know that deadline or laxity
alone cannot make an effective scheduling algorithm.
Based on this observation, we propose an algorithm,
Earliest Deadline/Least Laxity (ED/LL) that uses
both factors. Figure 3 shows ED/LL algorithm,

ED/LL is performed in the same way as EDF for
all tasks if there is no urgent task with zero laxity. If
a task with zero laxity occurs, however, ED/LL is
performed in the same way as LLA. Whenever the
number of the tasks with zero laxity is larger than O
for m~processor systems, ED/LL executes as many
as possible up to m tasks which have the smallest
laxity by preempting the current tasks with larger
laxity. ED/LL differs from EDZL in this point.
Remember that EDZL dispatches not only the tasks
with zero laxity but also the tasks with earlier

deadline and positive laxity if the number of the tasks
with zero laxity is smaller than the number of
processors. If ties occur among laxity values of the
current tasks when ED/LL uses LLA, the task with
the earliest deadline is chosen first. When all tasks
have been completed, ED/LL
switches scheduling algorithm back to EDF from
LLA.

with zero laxity

Algorithm EI/LL

1 while TRUE do
2 while there is any task with negative laxity do
3 remove it from the system
4 endwhile
5 if there is any task with zero laxity then
6 dispaich m tasks with smabler laxity fo all m-CPUs
7 if there is any task with zero laxity which is
not dispatched then

8 remove it from the system
9 endif
10 else if all tasks have a positive laxity then
11 dispatch m tasks with earlier deadline to ali m-CPUs
12 endif
13 wait for next schedule event

// the current tasks are Tunning
14 endwhile

Fig 3 ED/LL Algarithm
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For example, consider a set of ready tasks {(5)7),
4,7, (19}, which is not schedulable on three
processors under EDF and EDAZ. As we can see
from Table 3, the set of tasks is feasible under LLA,
EDZL, and ED/LL. 1t is easy to see that ED/LL can
successfully schedule all task sets that are
schedulable under strict EDF, since ED/LL is actually
an EDF algorithm until any task with zero laxity
occurs. Note that any task scheduled by its zero
laxity will never be preempted by other tasks.
Therefore, ED/LL has lower context
overhead than that of LLA. In Table 3, there are two
preemptions at time 3 and 5, and five context
switches under ED/LL, while
preemptions at time 3, 4 and 6, and six context
switches under LLA.

switching

there are three

Table 3 A scheduling example on three processors

LLA EDZL | EDAL

to 6D (4D (19)

ol UOUSEd | UHBHTY | LOEHTY
e| BHUHED | BHESTD | BHE5HT
6] GaGOWs | Coecaee | earoEs
u| @3e35 | 1IEAEE | 132365
5| 020260 | 022U | 02026
t | (LDODGI) 4DB3) | ADODEI

The implementation cost of ED/LL may be higher
than that of LLA since ED/LL keeps two ready
queues: a deadline queue and a laxity queue. Every
ready task is arranged in the order of deadline on the
deadline queue and in the order of laxity value on the
laxity queue. Each task under ED/LL is on two
queues at the same time, while each task under LLA
is on the laxity queue alone. Therefore the cost of
queue management under ED/LL is almost twice that
of LLA. However, ED/LL may be more desirable than
LLA considering the overhead of preemptions and
context switches. If the number of context swilches
decreases, the costs of managing queues as well as
the number of saving and restoring task contexts are
reduced. We will now show that ED/LL is suboptimal
on multiprocessors.

Lemma 1: For a given scheduling algorithm @ and a
set of ready tasks at time &, X, let Sched(X, @) he

Aad R olE A 29 A 1 B(Q00212)

the set of tasks which is feasible at time ¢ I X is
feasible on m-processors and & 1is suboptimal,
Sched(X, @) is always feasible on m-processors.
Proof. Trivial from the definitions of feasibility and
suboptimality.

Theorem 1. ED/LL is a suboptimal algorithm on
multiprocessors.

Proof. Let X be the set of ready tasks at time to, and
X' be Sched(X, ED/LL). We shall prove the theorem
by <contradiction, assuming that ED/LL
suboptimal. Suppose that X is schedulable under LLA
on m-processors but X' is not schedulable under

is not

ED/LL. There are two cases that must be considered.
At time 1y,

1) The number of tasks with zero laxity is m+k

(there can be tasks with non-zero laxity),
2) The number of tasks with laxity less than zero
is k

for some k>0. Without loss of the generality, we will
consider only the minimum unschedulable set of tasks
with k=1. We will show that a task set X which is
schedulable under LLA cannot be scheduled by LLA
if ED/LL is not suboptimal. The laxity value is
represented by L.
(case 1) The number of tasks with zero laxity is
(m+1) at time t; under ED/LL.
There can be three kinds of tasks at time to when
scheduled by ED/LL.

a) p tasks with =0, ¢ > 2,

b) (m+1) (p tasks with L=1, ¢ > 1, d > x,

¢y m(p tasks with L>1, ¢ = 1, d<x
for 8<p<m and x>3. If p = 1, ED/LL is suboptimal
since ED/LL uses LLA. For the proof, we consider
the smallest task set which is not schedulable under
ED/LL when p=0. If p=0, we have (m+1) tasks with
L=1, e=x-1, d=x, and m tasks with L=x-2, ¢=1, d=x-1.
These tasks require (m+1)(x-1)+m processing time
units in next x time units. But obviously, there are
only mx processing time units available. The
requirement (m+1)(x-1)+m=(m+1)x-1 is greater than
mx because x>3.
Therefore, X is not schedulable under LLA, which
contradicts the assumptions.
{case 2) A task T; has L= -1 at time t; under ED/LL.
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When the task T; with L=0 is not executed at time
to, T has L= -1 at time t;1. Since T; is not scheduled
at time to, the number of tasks with L=0 at time to
must be greater than or equal to m. That is, the
number of tasks with L=0 at time to is at least (m+1).
Hence, case 2 is equivalent to case 1. We consider
case 2 because this case can occur in EDF though it
never happens in ED/LL.

By theorem 1, ED/LL can schedule all ready tasks
that can be scheduled under LLA on multiprocessors.
ED/LL can schedule the set of tasks X= {(2,2),(2,2),
(4,5),(45),(1,4)} on three processors, while EDZL
cannot. That is, X is schedulable under ED/LL like as
LLA since Sched(X, ED/LL) = {(1,1),(1,1),(34),
(4,4),(1,3)}, and Sched(Sched(X, ED/LL), ED/LL) =
{(3,3),(3,3),(1,2)}. However, X is not schedulable under
EDZL because Sched(X, EDZL) = {(1,1),(1,1),
(44),(44)}, and Sched(Sched(X, EDZL), EDZL) =
{(3,3),4,3)}. Consequently, ED/LL better
validity than EDZL.

shows

4. Adaptive Algorithm: ED2/LL

Real-time systems may go into an overload phase
at any time because of the stochastic nature of the
release times of sporadic tasks. Therefore, it is
important to handle an overload phase as well as a
normal load phase. EDA2 shows a good performance
in the overload phase, while LLA and ED/LL show
better performance in the normal load phase. EDA2
shows best performance in a highly overload phase.
This means that the scheduling algorithm based on
both deadline and laxity is more efficient than an
algorithm based on laxity or deadline alone under
some situations. We saw from Table 2 that scheduler
based on deadline performs well for a set of the tasks
only if the tasks with negative laxity can be removed
early.

To handle effectively normal load and overload
phases together, we propose an adaptive algorithm
ED2/LL that uses an efficient algorithm depending on
system load condition. Figure 4 shows EDZ/LL
algorithm. EDZ2/LL first checks up the status of
system load. If the system is normally loaded,
ED2/LL uses EDZL or ED/LL, otherwise it uses

Algorithm ED2/LL

1 while TRUE do

2 if ‘Utility of system >= UB then
3 perform EDA2

4 else

5 if the number of processors is less than 3 then
6 perform EDZL

7 else

8 perform ED/LL

9 end if

10 endif

11 endwhile

Fig 4 ED2/LL Algorithm

EDA2. In ED2/LL, the switching between algorithms
occurs dynamically at run time according to system
load. On multiprocessor, it is not easy that the
scheduler determines exactly the state of system load.
If rate monotonic algorithm is used for periodic tasks
on uni-processor, we can predict whether a task set
will meet all of its deadlines by comparing the
utilization of the task set to a schedulable bound. For
the rate monotonic priority assignment, a task set T,

T2, ..., Tn is schedulable if

U=i% < n(Qh-1)
where C; is the computation time for a task of T; and
P; is the period for T. The C/P; is the utilization for
T

Anand and Sanjoy proposed a utilization-based
sufficient feasibility condition for scheduling periodic
task systems on m unit-speed processors [8]. They
also presented a definition that a periodic task system
T = {1 Tz .. Ta is said to be a light system on
m processors if it satisfies the following two
properties.

Property 1 U(1) < ni’/ (2m-1)

Property 2. For each v € &, U; < m’/ (2m-1)
where U is the utilization. Our goal in this paper is
not to propose a new model for deciding overload
phase for aperiodic tasks on multiprocessors, but to
study an adaptive real-time algorithm. We can still
use the utilization as the criteria for determining the
system load condition, even though our target system
is not a periodic real-time system.

The utilization for an aperiodic task set T, T, ..,
T, can be computed as
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U=3U,=3c/0-T)
i=l

where C; is the remaining computation time, D; is the
deadline for the task T, and T;: is current time. For
example, we can determine that system is in the
overload phase if U is larger than certain utilization
bound (UB). We can see some experimental results
of ED2/1L performed with some utilization bounds in
the next section.

5. Performance Evaluation

In this section, we evaluate the performance of
ED/LL and ED2/LL in comparison to EDF, EDAZ2,
LLA, and EDZL by simulation. Each task is specified
by three parameters: the worst case computation
time, laxity (deadline), and the arrival time of the
task. The start time of each task was generated
according to Poisson distribution with ( as the mean
number of task arrival per unit time. The execution
time was generated according to the normal
distribution with mean 10 and the standard deviation
2. The deadline was also generated according to the
normal distribution.

5. 1Notation

To evaluate the performance of each algorithm, we
have compared the percentage of tasks whose
deadlines are not missed and the number of context
switches under each algorithm. Table 4 shows
symbols and their meaning described in this paper.
The experiments were performed by varying the
number of processors, the rate of task arrival, and the

laxity values.

Table 4 Meaning of denotations

Symbol Meaning

m The number of processors

A The rate of task arrival

L The mean laxity value

SR | The percentage of tasks that meet their deadlines
CS | The number of context switches

PE | The number of preemptions

UB | The utilization bound for ED2/LL

5.2 Effects of the Number of Processors

In this experiment, we use the following

9 olE A 29 A A 11 Z(200212)

05, L = 10, and the
standard deviation of laxity value is 2. The number of
tasks generated is 200 and the UB is 0.8. That is,
EDZ/LL uses EDZL or ED/LL if the utilization of the
given task set is smaller than 0.8; otherwise it uses
EDAZ2. Figure 5 shows the effects of m on SR and
CS. SR increases with more processors. To schedule
all tasks completely, LLA, EDZL, ED/LL, and ED2/LL
need 8 or more processors, while EDF and EDA2

parameters: the value of A =

need 9 or more processors. The given set of tasks is
schedulable under ED/LL and ED2/LL on 8-
processors but not schedulable under EDA2. ED/LL
and ED2/LL are better real-time schedulers than
EDA2 since ED/LL and EDZ/LL show the better
validity in meeting the deadlines of tasks.

As we can see from Figure 5 EDF shows the
lowest SR and LLA shows the largest CS. EDA2
shows smaller SR than ED/LL and ED2/LL in normal
load phase, even though it achieves good performance
in overload phase. Comparing with LLA in normal
Joad phase, ED/LL and ED2/LL achieve almost the
same SR, and much smaller CS. When the system is
overloaded (m<6), EDA2 shows the best performance
while EDF shows poor performance. We can also see
that the proposed algorithm ED2/LL performs very
well not only in normal load phase but also in
overload phase while ED/LL shows a little poor
performance in overload phase. This means that the
algorithm hased on deadline may be efficient only if
the tasks with negative laxity are removed early from
system in some cases.

5.3 Effects of the Rate of Task Arrival

This experiment was performed with m = 5, L = 13,
and the standard deviation of laxity value =2. UB is
0.8 and the number of tasks generated is 200. Figure
6 shows the effects of A on SR and CS. When the
rate of task arrivals is relatively large, the probability
of deadline miss becomes large for all algorithms
since the system may be overloaded. The effects of A
on SR are opposite to those of the number of
processors on SR. The given set of tasks is feasible
when A<0.3 under LLA, EDZL, ED/LL, and ED2/LL,
while it is feasible when A<02 under EDF and
EDA2. Moreover, since ED/LL and ED2/LL show



GERY 7] ALy dEHAR AFATE BHE AT 2AFF T 619

MNo. of pfocessors :

I ——f---LlLA - B
400 §——m@@ee—ED2L O TTTTTTIITTIIITTIITIIOT
———r——ED - L R

350 bl BO2AL g - RPN }

100 L e s s e &
3 4 5 1 7 &

No. of processars

Fig 5 Effects of the number of processors (m)}

a8
07

[T — J— ]
Lo ;
| K

R AT Y
08 ~—g——eDzL
0.4 |~ DL N
05 @ EO2ILL ..,
1.w-0-.- EDF o,

02 ¢ |
e —t0A2

oy LTTIRTTTERAZ L |
03 0.4 0.5 06 07 08 ]

em e e e £

Arrival ate

ay
[&]

S VU P S RS I )
04 9.5 08 0.7 0.8

Arrival rate

|
|
|

Fig 6 Effects of the rate of task artival (A)

much smaller CS than LLA when 2=0.3, they are
better than LLA.

The number of context swiiches, especially for
LLA, tends to decrease when A=<<0.4. This is because
a large number of tasks that missed their deadlines
are removed early from the ready queue, resulting in
a small task set. The number of context switches
under ED/LL and ED2/LL is closer to that of LLA as
X increases. When the system is highly overloaded,
the tasks with zero laxity occur often so that the
preemptions by the tasks is increased under ED/LL
and ED2/LL.

5.4 Effects of the Laxity Values

The f{following parameters are used in this
experiment: m=6, A=0.4, and the standard deviation of
the laxity value is 2. UB is 0.8, and the number of
tasks generated is 200. Figure 7 shows the effects of
faxity values on SR and CS. Laxity values are varied
from 2 to 12. LLA, EDZL, ED/LL, and EDZ/LL are
valid for the given set of tasks when L>=12, while
EDF and EDA2 can be so when L=14. SR is not
much affected by the value of laxity. From figure 5
and 6, we can see that SR is more susceptible to the
number of processors and the arrival rate of tasks.

CS under LLA increases as L increases, while CS

under the remaining five algorithms is relatively
uniform, As the laxity value is large, it takes more
time until the task is completed or the laxity value
veaches zero. Therefore, more preemptions occur
under LLA, and less preemptions under ED/LL and
ED2/LL. However, if L becomes really large (Lz=11),
less preemptions occur even under LLA, because of
reducing the competition between old tasks and new
tasks.
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Fig 7 Effects of the laxity value (1)
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From the experimental results, we can see that the
proposed algorithms ED/LL and ED2/LL perform well
in comparison with the existing algorithms. ED/LL
and ED2/LL are suboptimal on m-multiprocessors
because they can generate a valid scheduie for every
feasible set of ready tasks. ED/LL and ED2/LL show
the same validity as LLA in meeting the deadlines of
tasks, while the number of context switches is much
smaller than that of LLA. Especially, ED2/LL shows
good performance independent of system load. EDF is
EDA2
shows poor SR in normal load phase even though it

ineffective algorithm on multiprocessors.
shows very good performance in highly overload
phase. Considering the overhead of context switches,
ED/LL and ED2/LL are more desirable than LLA in

real-time systems.

3.01) (4,02 (5 0.3 (804 {7 05 (8 0.5 ({9 05}
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Normalized no. of conte
switches
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Fig 8 Effects of the fluctuant rate of task arrival

5.5 Effects of the load fluctuation

In this experiment, we checked the performance of
each algorithm with changing workloads, arrival rates
and the number of processors during runtime. If A
was used in this experiment, it means that we
performed the experiment using A for seventy
percent of total tasks and (A+0.3) for thirty percent.
Than is, 2=0.2 means that the seventy percent of the
tasks arrived at the rate of 0.2 and the thirty percent

arrived at 0.5. We used the following parameters: the
value of L. = 4, and the standard deviation of laxity
value is 1. The number of tasks generated is 1000.
TFigure 8 shows the effects of fluctuant » (0.1<A
<0.5) on SR and the normalized CS on m-processors
(3<m=<9). The UB is 0.8. As we can see from figure
8, ED2/LL can achieve the largest SR and show much
smaller CS than those of LLA when the system is
overloaded with fluctuant A. Generally the system
load is not fixed but is fluctuated depending on work
time in real systems. Under this condition, EDAZ

Table 5 Effects of utilization bound under ED2/LL

ED2/LL  (m=4, 2=0.2)

UuB SR CS PE
1.0 0.930 1172 242
0.9 0.945 1176 217
0.3 0.945 1176 217
0.7 0.941 1150 189
0.6 0.941 1150 189
05 0.934 1084 126
04 0.934 1084 126
0.3 0.934 1084 126
02 0.918 989 31

0.1 0.918 989 31

could not achieve good performance even in overload
phase. LLA, EDZL, and ED/LL show better per-
formance than EDA2 in lightly overload phase.

We also analyzed the performance of ED2/LL by
changing UB on 4-processor system when A=0.2.
The experimental results are shown in table 5. SR is
not much affected by UB. The number of context
switches also decreased as UB decreased. This is
because ED2/LL get more chance to use EDA2 when
UB is small. Considering SR, the overhead of context
switches, and system load phase together, ED2/LL is
much more desirable than LLA, EDA2, and EDZL in
real-time systems.

6. Conclusions

In this paper, we have proposed new on-line
algorithms ED/LL and ED2Z/LL for
multiprocessors. In multiprocessor systems, EDF has

real-time

a low context switching overhead, but suffers from
multi-processor anomalies in that it has a high
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LILA has been shown as
suboptimal, but has a potential high context switching
EDZL is suboptimal
and EDAZ is not
multiprocessors. The ED/LL algorithm proposed in
this paper has advantages from both EDF and LLA:
low context switching “overhead and low deadline
miss rate. We also show that ED/LL is suboptimal for
multiprocessors. Since ED/LL is not good when the

deadline miss ratio.

overheads. only for two

processors suboptimal  for

system is overloaded, we also proposed EDZ/LL
which uses EDZL or ED/LL in normal load phase and
uses EDAZ in overload phase. Finally, simulation
results show that ED/LL and ED2/LL are practical

algorithms that can be wused in real-time

multiprocessor systems.
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