• Title/Summary/Keyword: 무반사 경계조건

Search Result 11, Processing Time 0.029 seconds

타원형 완경사 모형에서의 고차원 무반사 경계조건에 관한 연구

  • ;M. B. Abbott;M. W. Dingemans
    • Proceedings of the Korean Society of Coastal and Ocean Engineers Conference
    • /
    • 1992.08a
    • /
    • pp.72-76
    • /
    • 1992
  • 평면파 수치모형 해석시 가상경계에 평행한 입사각을 갖거나, 다방향의 입사파가 가상경계로 동시에 입사되는 경우에는 무처리 시 수치 반사가 발생되므로 해에 악영향을 미친다. 따라서 이러한 경우에 대해 가상경계에서 파랑 Energy 투명하게 통과시키는 고차원 무반사 경계조건에 대해 연구하였다. 이들 조건식의 수학적 안정성을 분석하기 위해 phperbolic system에서 normal-mode 분석을 수행하였다. 1차 및 2차의 고차원 무반사 경계조건을 Galerkin 가중잔차법을 이용 유한요소 모형에 적용하였으며 이들에 대한 특성을 시험하기 위해 수치실험을 실시하였다.

  • PDF

Simulation of Reflective Boundaries Using the Sponge Layer in Boussinesq Wave Propagation Model (Boussinesq 파랑전파모델에서 스펀지층을 이용한 반사경계의 모의)

  • Chun, In-Sik
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.19 no.5
    • /
    • pp.429-435
    • /
    • 2007
  • The present study proposed a method fer simulating reflective boundary conditions in Boussinesq wave propagation model by lining lateral boundaries like breakwaters and seawalls with artificial sponge layers. In order to find out the reflective characteristics of sponge layers, 1D numerical experiments were performed varying the relative sponge width (sponge width/wave length). The results showed that the reflection coefficient can be effectively realized from no reflection to full reflection simply by adjusting the relative sponge width. Based on the results, a multiple regression formula was proposed to delineate the relationship among the reflection coefficient and other dimensionless variables. Finally, the reflective sponge layer was applied to a semi-infinite breakwater, demonstrating that it can also be successfully employed in 2D applications.

Analysis of Wave Responses in Harbor Using Boundary Damper Techniques (경계 damper를 이용한 항만 파낭응답 해석)

  • 정원무;박우선
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.5 no.1
    • /
    • pp.39-44
    • /
    • 1993
  • This paper is concerned with developing a finite element model incorporating boundary damper techniques which is applicable to the prediction of wave agitations in harbors. Based on the linear wave theory, a mild-slope equation is used. In order to consider the wave energy dissipations on solid boundary. the partial reflecting boundary condition is introduced. Radiating boundary condition is modeled by using tile second-order boundary damper developed by Bando et al. (1984). The near field region in harbor is discretized using 8-noded isoparametric elements, the boundary conditions are presented using 3-noded line elements. The numerical model is applied to a fully open rectangular harbor to prove its validity. Numerical experiments are also performed to investigate the effects of the wave reflection coefficients of solid boundary and the types of the dampers.

  • PDF

Review and Analysis of Boundary Conditions for SPH Particles (SPH 입자의 경계조건 분석 및 해석)

  • Lee, Min-A;Tak, Moon-Ho;Park, Tae-Hyo
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2011.04a
    • /
    • pp.756-759
    • /
    • 2011
  • 일반적으로 컴퓨터를 이용한 수치 해석에는 격자 수치 해석 방법인 유한요소법 또는 유한차분법이 주로 사용되어 왔다. 그러나 이러한 방법들은 해석하고자 하는 영역을 요소나 격자 등으로 분할해야 하기 때문에 복잡한 현상들을 다루는 데 어려움을 갖게 된다. 이를 극복하기 위해 개발된 방법이 무요소법(Meshfree Method)이며 본 논문에서는 다양한 무요소법들 중 SPH(Smoothed Particle Hydrodynamics)가 고려되어진다. SPH는 라그랑지안 수치 근사 기법을 사용하는 입자법(Particle Method)으로 SPH를 정확하게 실행하기 위해서는 적절한 경계 처리법이 요구된다. 그러나 기존의 경계 처리법은 유체 입자의 침투현상 및 커널(Kernel) 끊김 현상이 발생하기 때문에 적합하지 않다. 따라서 지금까지 SPH의 경계 처리법을 향상시키기 위해 다양한 접근법들이 제안되었으며 본 논문에서는 이러한 접근법들 중 정반사(Specular Reflection), 재회복(Bounce-back), 재도입(Reintroduce) 방법 및 경계 반발력(Repulsive Force)과 가상 입자(Ghost Particle)의 적용이 분석되고 현상 접목을 통해 적절한 경계 처리법이 제안되어진다.

  • PDF

Development of internal inflow/outflow steady mean flow boundary condition using Perfectly Matched Layer for the prediction of turbulence-cascade interaction noise (난류-캐스케이드 상호작용 소음 예측을 위한 Perfectly Matched Layer 을 이용한 내부 입/출구 정상유동 경계조건의 개발)

  • Kim, Dae-Hwan;Cheong, Cheol-Ung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.04a
    • /
    • pp.521-526
    • /
    • 2012
  • It is essential for the accurate time-domain prediction of broadband noise due to turbulence-cascade interaction to develop inflow/outflow boundary conditions to satisfy the following three requirements: to maintain the back ground mean flow, to nonreflect the outgoing disturbances and to generate the specified input gust. The preceding study(1) showed that Perfectly Matched Layer (PML) boundary condition was successfully applied to absorb the outgoing disturbances and to generate the specified gust in the time-domain computations of broadband noise due to interaction of incident gust with a cascade of flat-plates. In present study, PML boundary condition is extended in order to predict steady mean flow that is needed for the computation of noise due to interaction of incident gust with a cascade of airfoils. PML boundary condition is originally designed to absorb flow disturbances superimposed on the steady meanflow in the buffer zone. However, the steady meanflow must be computed before PML boundary condition is applied on the flow computation. In the present paper, PML equations are extended by introducing source term to maintain desired mean flow conditions. The extended boundary condition is applied to the benchmark problem where the meanflow around a cascade of airfoils is predicted. These illustrative computations reveal that the extended PML equations can effectively provide and maintain the target meanflow.

  • PDF

Development of Internal Inflow/outflow Steady Mean Flow Boundary Condition Using Perfectly Matched Layer for the Prediction of Turbulence-cascade Interaction Noise (난류-캐스케이드 상호작용 소음 예측을 위한 Perfectly Matched Layer을 이용한 내부 입/출구 정상유동 경계조건의 개발)

  • Kim, Dae-Hwan;Cheong, Cheol-Ung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.7
    • /
    • pp.685-691
    • /
    • 2012
  • It is essential for the accurate time-domain prediction of broadband noise due to turbulence-cascade interaction to develop inflow/outflow boundary conditions to satisfy the following three requirements: to maintain the back ground mean flow, to nonreflect the outgoing disturbances and to generate the specified input gust. The preceding study showed that perfectly matched layer(PML) boundary condition was successfully applied to absorb the outgoing disturbances and to generate the specified gust in the time-domain computations of broadband noise due to interaction of incident gust with a cascade of flat-plates. In present study, PML boundary condition is extended in order to predict steady mean flow that is needed for the computation of noise due to interaction of incident gust with a cascade of airfoils. PML boundary condition is originally designed to absorb flow disturbances superimposed on the steady meanflow in the buffer zone. However, the steady meanflow must be computed before PML boundary condition is applied on the flow computation. In the present paper, PML equations are extended by introducing source term to maintain desired mean flow conditions. The extended boundary condition is applied to the benchmark problem where the meanflow around a cascade of airfoils is predicted. These illustrative computations reveal that the extended PML equations can effectively provide and maintain the target meanflow.

A Method of Analysis to Predict Sound Transmission Loss of an Extruded Aluminum Panel for Use on Railway Vehicles (철도차량용 알루미늄 압출재의 음향 투과손실 예측에 관한 연구)

  • Kim, Kwanju;Lee, Jun-Heon;Kim, Dae-Yong;Kim, Seock-Hyun
    • Journal of the Korean Society for Railway
    • /
    • v.16 no.1
    • /
    • pp.20-25
    • /
    • 2013
  • The frame elements of modern high speed trains are typically fabricated with extruded aluminum panels. However, the sound transmission loss (STL) of extruded aluminum panels is less satisfactory than flat panels with the same surface density. This study proposes a method for prediction of the sound transmission loss of extruded aluminum panels using finite element analysis. The panel is modeled by finite element analysis, and the STL is calculated using a measure of Sommerfeld radiation at the specimen surface, boundary conditions, and the internal loss factor of the material. In order to verify the validity of the predicted value, intensity transmission loss was measured on the aluminum specimen according to ASTM E2249-02. The proposed method of analysis will be utilized to predict the sound insulation performance of extruded aluminum panels for railway vehicles in the design stage, and to establish measures for their improvement.

FEM Boundary Matching Using Anisotropic Absorber (비등방성 흡수체를 이용한 유한요소법 경계정합)

  • Jang, Young-Choon;Jang, Sung-Hoon;Cheon, Chang-Yul
    • Proceedings of the KIEE Conference
    • /
    • 1997.07e
    • /
    • pp.1883-1886
    • /
    • 1997
  • 3차원 유한요소법에 정합 조건을 구현하기 위해 유한한 두께를 갖는 흡수체을 이용하였다. 흡수체는 자유공간과의 경계에서 모든 입사각에 대해 무반사특성을 갖으며, 일단 흡수체 내로 전파된 파는 흡수체의 끝에 도달하기 전에 흡수체를 통과하면서 충분히 손실되도록 하였다. 이러한 흡수체는 ${\varepsilon}_r$${\mu}_r$에 비등방복소주대각텐서를 사용하여 구현된다. 구현된 흡수체층은 구형도파관에 적용하여, 전파상수를 이용하여 정합시킨 경우와 결과를 비교하였다.

  • PDF

Effective Simulation Technology for Near Shore Current Flow (연안해수유동에 관한 효율적인 수치계산기법)

  • Yoon, B.S.;Rho, J.H.;Fujino, M.;Hamada, T.
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.32 no.4
    • /
    • pp.38-47
    • /
    • 1995
  • The three-dimensional multi-layer computer simulation technology for tidal current developed in the previous study is updated to a new version. many improvements are achieved by following changes : (1) No-reflection condition is adopted instead of no-gradient condition as an open boundary condition. (2) Time marching algorithm is changed so that velocity and pressure(surface movement) might be salved in turn at different time step (3) Convection term in equation of motion is estimated by upwind differencing scheme instead of central differencing. The stability is improved considerably and the steady state is achieved within 2 tidal periods which is about 3 times shorter than that of the old version. Moreover, fluctuations in time disappeared by introducing the new time marching technique. An application to the real near shore area(near Inchon harbor) is performed by the new version. Simulated results are compared with those by the simulation total developed in the University of Tokyo. Validity and effectiveness of the two simulation technologies are chocked through the comparative research works.

  • PDF

Characteristics of Harbor Resonance in Donghae Harbor (Part 2. Numerical Calculation) (동해항(東海港)의 부진동(副振動) 특성(特性)(2. 수치계산(數値計算)))

  • Jeong, Weon Mu;Jung, Kyung Tae;Chae, Jang Won
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.3
    • /
    • pp.185-192
    • /
    • 1993
  • A numerical model has been used for the prediction of wave agitations in a harbor which are induced by the intrusion and transformation of incident waves. Based on linear wave theory a mild-slope equation has been used. A partial absorbing boundary condition has been used on solid boundary. Functional has been derived following Chen and Mei(l974)'s technique based on Hybrid Element Method which uses finite discretisation in the inner region and analytical solution of Helmholtz equation in the outer region. Final simultaneous equation has been solved using the Gaussian Elimination Method. Helmholtz natural period and second peak period of seiche in Donghae Harbor coincide very well with the results from numerical calculation. Computed amplification factors show good agreement, especially when the reflection coefficient on solid boundary is 0.99, with those of measurements.

  • PDF