8진트리 모델은 3차원 물체를 계층적으로 모델링할 수 있는 기법으로 임의의 시각 방향에서 투영영상을 생성할 수 있으므로 3차원 물체인식 등 다양한 분야에서 효율적인 데이터 베이스로 사용될 수 있다. 본 논문에서는 8진트리 모델을 사용해 투영 영상을 만들어 보고 Multi level boundary search 알고리즘을 사용해 표면 영상을 생성해 본다. 또한 2D 영상과 3D 영상의 특징점을 구하는 방법과 2D 특징점, 3D 특징점의 기하학적 변환을 통하여 유사 특징점을 찾는 방법에 대하여 언급한다. 이 방법들은 3D 물체 모델링을 위한 효율적인 데이터 베이스 구축과 물체 특징점 응용을 위한 기본 자료로 활용될 수 있다.
네트워크 기반의 침입탐지시스템에서는 수집된 패킷데이타의 분석을 통해 침입인지 정상행위 인지를 판단하여 경보를 발생 시키며 이런 경보데이타의 양은 기하급수적으로 증가하고 있다. 보안관리자는 이러한 대량의 경보데이타들을 분석하고 통합 관리하여 네트워크 보안레벨을 진단하거나 시간에 따른 적절한 대응을 하는데 유용하게 사용하여야 한다. 그러나 오경보의 비율이 너무 높아 경보 데이터들간의 상관관계 분석이나 고수준의 의미 분석에 어려움이 많으므로 분석결과에 대한 신뢰성이나 분석의 효율성이 낮아지는 문제점을 가진다. 이 논문에서는 데이타 마이닝의 분류 기법을 적용하여 오경보율을 최소화하는 방법을 제안한다. 결정트리기반의 분류 기법을 오경보 분류 모델로 적용하여 오경보들 중 실제는 공격이 아님에도 불구하고 공격이라 판단된 오경보를 정상으로 분류할 수 있는 경보 데이타 분류 모델을 설계하고 구현한다. 구현된 경보데이타 분류 모델은 오경보율을 최소화하므로 경보데이타의 분석 및 통합을 통해 경보메시지의 축약 및 침입탐지시스템의 탐지율을 높이는데 활용될 수 있다.
오버레이 멀티캐스트는 하드웨어적인 인프라의 구축 없이도 시스템의 자원과 네트워크 대역폭을 효율적으로 사용할 수 있는 기법이지만 IP 멀티캐스트와는 달리 중간 노드의 이탈이 발생하게 되어 멀티캐스트 트리의 복구가 필요하다. 본 논문에서는 이러한 결점을 보완하기 위해 각각의 노드가 가지는 Out Degree 자원을 사전에 예약하여 트리의 복구가 필요로 할 때 자원을 예약한 노드에게 바로 서비스를 요청하는 모델을 제안한다. 제안된 모델은 백업 노드의 도움으로 빠른 복구가 가능하고 복구된 노드들에게는 새로운 경로에서 발생한 지연시간의 영향을 최소화 했다. 시뮬레이션 결과를 통해 제안된 모델이 기존의 기법들 보다 적은 복구 시간이 소요되고 부모 노드의 이탈로 인해 많은 수의 노드가 영향을 받는 상황일수록 더욱 효과적인 방안임을 보여주고 있다.
최근 ISO/IEC의 MPEG과 ITU-T의 VCEG이 JCT-VC (Joint Collaborative Team for Video Coding)를 구성하여 HEVC (High Efficiency Video Coding) 차세대 비디오 압축 표준 제정을 위한 작업을 진행 중이다. 과거 압축률이 가장 좋은 것으로 알려진 H.264/AVC 보다 최대 50%까지 부호화 효율 향상을 목표로 하고 있다. HEVC는 H.264/AVC와는 상이한 부호화 구조를 채택하고 있고 작은 크기의 영상뿐만 아니라 크기가 큰 영상까지도 효율적으로 부호화할 수 있도록 설계되고 있다. 예측 및 변환 부호화 과정이 계층적 쿼드트리 구조를 가지며, 특히 변환 부호화는 작은 크기의 변환 블록으로부터 $32{\times}32$ 크기의 변환 블록까지 크게 확장되어 계층적 변환 구조를 이루며 부호화하도록 되어 있다. 본 논문에서는 기존 코덱과는 상이한 부호화 구조를 갖는 쿼드트리 부호화 기반 HEVC 코덱 표준을 위한 율-왜곡 (Rate-Distortion) 모델을 제안한다. 기존의 코덱에서는 부호화되는 기본 단위가 $16{\times}16$로 일정하고, 변환 및 양자화되는 블록의 크기 역시 $4{\times}4$또는 $8{\times}8$ 크기 단위로 그 블록의 크기가 작을 뿐만 아니라 고정된 크기를 사용한다. 따라서 단일 확률 모형을 사용하여 율-왜곡 모델을 만들었으며, 그 정확도 역시 비교적 정확한 결과를 얻었다. 그러나 HEVC에서는 계층적 가변 블록 크기를 갖는 기본 부호화, 예측 및 변환/양자화 기법을 사용하기 때문에 기존의 단일 모델로는 정확한 율-왜곡 모델을 만들어 내기 어렵다. 제안하는 방법은 HEVC의 기본 단위인 CU (Coding Unit)별로 독립적인 확률 모형을 사용하여 율-왜곡모델을 사용하는 것으로 CU의 크기가 가변적이고 CU 내의 텍스처 역시 크기에 따라 매우 다른 특성을 가지고 있기 때문에 단일 모델을 사용하는 것보다 매우 효율적인 것을 실험을 통하여 확인하였다.
하천의 염분 변화를 신속히 예측하는 것은 염분 침투로 인한 농업, 생태계의 피해를 예측하고 재해 방지 대책을 수립하기 위해서 중요한 작업이다. 머신러닝 기법은 물리 기반 수리 모델에 비해 계산량이 훨씬 적기 때문에, 비교적 짧은 시간에 염분농도를 예측 가능하여 물리 기반 수리 모델의 보완 기법으로 연구되고 있다. 해외에서는 머신러닝 기법 기반 염분 예측 연구들이 활발히 연구되고 있으나, 대한민국의 공공데이터에 머신러닝 기법을 적용한 연구는 충분치 않다. 낙동강 하구의 환경 정보에 관한 공공데이터와 함께, 본 연구는 여러 종류의 머신러닝 기법의 염분농도에 대한 예측 성능을 측정하였다. 실험 결과에서, 결정 트리 기반의 LightGBM 알고리즘은 평균 RMSE 0.37의 예측 정확도와 타 알고리즘 대비 2-20배 빠른 학습 속도를 보여주었다. 따라서 국내 하천의 염분농도 예측에도 머신러닝 기법을 적용할 수 있다고 판단된다.
본 논문에서는 모바일환경에서의 사용자 감정인지를 통한 개인화 서비스 지원에 필요한 위치기반 센싱 데이터의 전처리 기법과 사용자 감정 데이터의 구축 및 전처리를 위한 V-A 감정 모델에서의 감정 데이터 전처리 기법에 대하여 연구한다. 이를 위하여 그래뉼러 컨텍스트 트리 및 스트링 매칭 기반의 감정 패턴 매칭 기법을 사용한다. 또한 상황 인지를 통한 개인화 서비스를 위해 확률 기반 추론을 이용한 상황 인식 및 개인화 서비스 추천 기법에 대하여 연구한다.
시맨틱 웹의 등장에 따라 RDF와 RDF Schema(RDF/RDFS)로 표현되는 웹 데이타의 양이 증가하고 있다. 이에 웹 데이타를 효율적으로 저장, 검색할 수 있는 인덱스 구조의 필요성이 높아지고 있다. 본 연구에서는 기존의 트리 모델을 위한 소수 레이블 기법(prime number labeling scheme)을 발전시켜, RDF/RDFS 인덱스 구조를 표현할 수 있는 그래프 모델을 위한 소수 레이블 기법을 제안한다. 제안한 기법은 기존의 소수 레이블 기법을 그래프에 적용하여 구조 질의(Structural Query)를 효율적으로 처리할 수 있고, 데이타 갱신 시에 인덱스를 재구성하지 않아도 되는 장점을 가지고 있다. 그리고 이전의 RDF/RDFS 인덱스 구조에서 효율적으로 처리하기 힘들었던 순환 방향성 그래프에 대한 질의도 쉴게 처리할 수 있다.
수년간 두 명의 사용자 혹은 세 명의 사용자 사이의 키교환 프로토콜을 위한 안전성 모델이 정의 되어왔다. 또한 최근에는 그룹키 관리 기법에 대한 안전성 모델에 관한 연구가 진행되고 있다. 그 결과 분산 방식의 그룹키 교환 기법을 위한 안전성 모델과 증명 가능한 프로토콜들이 다양하게 제시되고 있다. 그러나 중앙 분배 방식의 그룹키 분배 기법에 대해서는 구체적인 안전성 모델이나 증명 가능한 프로토콜에 대해 거의 언급되지 않았다. 본 논문에서는 중앙 분배 방식의 그룹키 분배 기법을 위한 안전성 요구 조건과 안전성 모델에 대해 설명한다: 이 모델은 강력한 사용자 공모 공격(strong user corruption attack) 능력을 지니고 있는 공격자에 의해 제어되는 채널에서 정의된다. 본 논문에서는 이 안전성 모델에 기반하여 기존의 중앙 분배 방식의 그룹키 기법을 안전성이 증명 가능한 기법으로 전환할 수 있는 변환 모듈을 제시하고자 한다.
본 논문은 심장이 수축$\cdot$이완함에 따라 그 형태와 위치가 변하는 관상동맥의 구조와 그 움직임을 사실적으로 표현하기 위한 매개변수적 모델링 기법을 제안한다. 완성된 모델은 관상동맥의 움직임을 관찰함으로써 심장질환 판단에 도움을 주고, 심장시술 시뮬레이션 및 시술계획수립에 사용될 수 있다. 매개변수적 기법으로 생성된 모델은 메쉬 정점의 인덱스만으로 모델간 매칭을 위한 대응점을 찾을 수 있으므로, 시간대별로 달라지는 정점의 위치를 쉽게 추적함으로써 모델의 움직임을 표현할 수 있다. 그러나 이러한 기법으로 생성된 모델은 분리, 접합 등의 변형조작이 어렵고, 트리형태 객체에 적용하기 힘든 단점이 있다. 본 논문에서는 이를 극복하기 위해 분할된 혈관영역의 골격데이타에서 찾아낸 분기점을 중심으로 Generalized Cylinder를 이용하여 실린더 형태의 각 혈관세그먼트를 모델링 한 후, 분기영역을 3개의 하프파이프(half pipe)와 2개의 삼각형 패치로 연결하여 모델링하였다. 완성된 모델은 다시점 관상동맥데이터에 적용하였고, 각 시점에서 구해진 정점의 위치를 선형보간함으로써 부드러운 혈관의 움직임을 나타내었다.
유비쿼터스 시대가 도래함에 따라 실내 환경에서의 위치 기반 서비스의 요구가 높아지고 중요해지고 있다. 따라서 본 논문은 실내 환경에서 이동객체의 위치를 추적하고, 이로 인해 생성된 위치데이터를 활용한 색인 알고리즘을 통해 이동 객체의 궤적을 트리에 저장, 색인하는 시스템을 제안한다. 제안하는 시스템은 기존에 사용되던 삼각측량 기법을 통해 실내 환경에서의 위치 데이터를 생성한 후, Kalman Filter를 사용하여 오차를 보정한다. 보정된 최종 위치 데이터를 기존에 연구된 HR 트리의 성능을 개선한 EHR-트리에 저장하여 이동객체의 위치를 색인 한다. 이를 통해 실내 환경에서 이동 객체의 이동 경로를 수집함으로 대형 쇼핑몰에서 미아를 찾거나 유통과 물류 등에서 사용자 또는 물품의 이동경로 분석을 통해 새로운 비즈니스 모델을 도입하는 등 다양한 서비스를 제공할 수 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.