• Title/Summary/Keyword: 모니터링 로봇

Search Result 191, Processing Time 0.03 seconds

Monitoring Sensor Robot System based on Wireless Sensor Network (무선 센서 네트워크 기반의 모니터링 센서 로봇 시스템)

  • Choi, Ho-Jin;Pyun, Jae-Young
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.12
    • /
    • pp.2330-2336
    • /
    • 2008
  • This paper deals with monitoring sensor robot control system for the application of wireless sensor network. In order to control the direction and speed of robot via remote sensing environment, low power, low weight sensors with ad-hoc networking between robots' sensors have been used. These wireless sensor network based robot monitoring system can be used for remote observation and detection of robots in the areas such as factories, power plants and other dangerous areas which are difficult for human access.

Implementation of Distributed Observer Pattern about SOMAR environment for URC Robot Status Information Monitoring (URC 로봇 상태정보 모니터링을 위한 SOMAR 환경에서의 분산 Observer 패턴 구현)

  • Kim, Sooyeon;Kwak, Donggyu;Choi, Jaeyoung;Yoo, Chae-Woo
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2009.11a
    • /
    • pp.217-218
    • /
    • 2009
  • URC 로봇은 고성능 서버를 통해 로봇이 수행할 서비스의 일부를 외부 디바이스에 분담시킴으로써 저렴한 하드웨어로 로봇을 구현하고자 하는 목적을 가지는 지능형 서비스 로봇이다. SOMAR는 유비쿼터스 환경에서 사용자에게 다양한 원격 로봇 서비스를 제공하기 위한 URC 로봇 미들웨어로, URC 로봇 클라이언트와 이를 등록, 제어, 관리하는 서버로 구성된다. SOMAR 서버를 통해 로봇 서비스를 수행하기 위해서는 로봇 클라이언트의 상태정보를 모니터링하여 수행가능 여부를 판단해야 한다. 본 논문은 이러한 상태정보 모니터링을 위해 R-OSGi를 이용한 분산 Observer 패턴을 구현한다. Observer 패턴은 객체간에 느슨한 결합구조를 가져 URC 로봇 클라이언트 모니터링 프로그램의 개발과 수정이 용이하고, 플러그인 방식의 개발을 통해 다양한 프로그램 설치와 응용이 가능하다.

Multi-Agent Monitoring System for Intelligent Service Robots (지능형 서비스 로봇을 위한 멀티 에이전트 모니터링 시스템)

  • Haneol Cho;Insik Yu;Jaeho Lee
    • The Transactions of the Korea Information Processing Society
    • /
    • v.13 no.8
    • /
    • pp.356-366
    • /
    • 2024
  • Users of intelligent robots require access to the status data of the robots for various reasons. The status data of intelligent robots can be generated by combining the status data of the functional agents that constitute the intelligent robot. However, existing intelligent robot systems do not generate the necessary agent status data for creating the status data of intelligent service robots, or they generate it in different ways, making it impossible to collect this information in a uniform manner. Furthermore, these systems have limitations such as collecting the same information redundantly if multiple users request it and only using a single method of communication to deliver robot information, thereby failing to offer the communication methods desired by users. This paper proposes a multi-agent monitoring system for intelligent service robots designed to overcome these limitations. This monitoring system generates status data in response to the actions performed by functional agents, thereby allowing for the unified generation and collection of agent status data. Additionally, the monitoring system resolves data redundancy issues by collecting the necessary data just once, in accordance with user monitoring demands, and delivers status data through a proxy that supports the preferred communication methods of users, thereby providing compatibility with various communication methods. Through experiments, we have verified that this monitoring system can deliver the status data of intelligent robots to multiple users using various communication methods.

Implementation of Home Monitoring System Using a Vacuum Robot with Wireless Router (유무선공유기와 청소로봇을 이용한 홈 모니터링 시스템의 구현)

  • Jeon, Byung-Chan;Choi, Gyoo-Seok;Kang, Jeong-Jin
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.8 no.5
    • /
    • pp.73-80
    • /
    • 2008
  • The recent trend in home network system includes intelligent home environments that remote monitoring and control service is achieved without restrictions by device types, time, and place. Also the use of a vacuum robot in homes is gradually generalized on account of the convenience of the use. In this paper, we proposed and realized new home-monitoring system with the employment of an self-movement robot as one trial for realizing an intelligent home under home network environment. The proposed system can freely monitor every where in home, because the system effectively overcame the surveillance limitations of the existing monitoring system by attaching a Wireless Router and WebCam to a commercial vacuum robot. The outdoor users of this system can readily monitor any place which they want to supervise by controlling a vacuum robot with mobile telecommunication devices such as PDA. The wireless router installed with Linux operation system "OpenWrt" made it possible for the system users to transmit images and to control a vacuum robot with RS-232 communication.

  • PDF

Unity Engine-based Underwater Robot 3D Positioning Program Implementation (Unity Engine 기반 수중 로봇 3차원 포지셔닝 프로그램 구현)

  • Choi, Chul-Ho;Kim, Jong-Hun;Kim, Jun-Yeong;Park, Jun;Park, Sung-Wook;Jung, Se-Hoon;Sim, Chun-Bo
    • Smart Media Journal
    • /
    • v.11 no.9
    • /
    • pp.64-74
    • /
    • 2022
  • A number of studies related to underwater robots are being conducted to utilize marine resources. However, unlike ordinary drones, underwater robots have a problem that it is not easy to locate because the medium is water, not air. The monitoring and positioning program of underwater robots, an existing study for identifying underwater locations, has difficulty in locating and monitoring in small spaces because it aims to be utilized in large spaces. Therefore, in this paper, we propose a three-dimensional positioning program for continuous monitoring and command delivery in small spaces. The proposed program consists of a multi-dimensional positioning monitoring function and a ability to control the path of travel through a three-dimensional screen so that the depth of the underwater robot can be identified. Through the performance evaluation, a robot underwater could be monitored and verified from various angles with a 3D screen, and an error within the assumed range was verified as the difference between the set path and the actual position is within 6.44 m on average.

The Development of Remote Monitoring Technology for URC Robot (URC 로봇 원격 모니터링기술 개발)

  • Kim Joo-Man
    • The Journal of the Korea Contents Association
    • /
    • v.6 no.8
    • /
    • pp.8-19
    • /
    • 2006
  • In the ubiquitous environment, the real-time remote control and monitoring technology for intelligent robot creates service as a sharable and independent of time-location for various contents to get from a sensor or camera of the robot. In this paper, We propose the real-time monitor and control mechanism for intelligent robot called URC(Ubiquitous Robotic Companion). URC are intelligent robots designed as to interact with external digital device that can communicate through wire or wireless by integration the network and information technology into traditional robot. It has been carried out by implementing this technology into the target robot called ISSAC4 and proving its practical worth. We designed feasibly to control on remote site by web-browser. It guarantees a continuity of real-time image transferring by Client-Pull method.

  • PDF

Implementation of Pipeline Monitoring System Using Bio-memetic Robots (생체 모방 로봇을 이용한 관로 모니터링 시스템의 구현)

  • Shin, Dae-Jung;Na, Seung-You;Kim, Jin-Young;Jung, Joo-Hyun
    • The KIPS Transactions:PartA
    • /
    • v.17A no.1
    • /
    • pp.33-44
    • /
    • 2010
  • We present a pipeline monitoring system based on bio-memetic robot in this paper. A bio-memetic robot exploring pipelines measures temperature, humidity, and vibration. The principal function of pipeline monitoring robot for the exploring pipelines is to recognize the shape of pipelines. We use infrared distance sensor to recognize the shape of pipelines and potentiometer to measure the angle of motor mounting infrared distance sensor. For the shape recognition of pipelines, the number of detected pipelines is used during only one scanning of distance. Three fuzzy classifiers are used for the number of detected pipelines, and the classifying results are presented in this paper.

Tele-Operating DAQ System for Bio-Inspired Robots (생체모방로봇 제어를 위한 원격 DAQ 시스템)

  • Oh, Seung-Yeop;Choi, Jae-Sung;Son, Byung-Rak;Lee, Dong-Ha;Yoo, Joon-Hyuk
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2012.06a
    • /
    • pp.274-275
    • /
    • 2012
  • 생체모방로봇은 인간을 비롯하여 새, 곤충, 물고기 등 동물들의 기본구조, 행동원리 및 메커니즘을 모방한 로봇이다. 정찰, 수색, 테러진압 등 군사작전에서부터 인명구조까지 생체모방로봇은 인간의 눈과 발을 대신하여 인간이 접근할 수 없는 오염 지역을 면밀히 탐지하는 데에도 유용하리라 예상된다. 이와 같은 생체모방로봇이나 MAV 등을 실시간으로 원격에서 모니터링하고 제어할 수 있는 DAQ 시스템의 중요성이 커지고 있다. 본 논문에서는 생체모방로봇인 가오리를 원격 관제 센터에서 RF무선통신을 이용하여 안정적인 제어 및 모니터링이 가능한 DAQ(Data AcQuisition) 시스템을 제안한다.

A Study on Pet-monitoring Robot Design (애완견 모니터링 로봇 디자인 연구)

  • Chung, Yong-Jin
    • The Journal of the Korea Contents Association
    • /
    • v.17 no.8
    • /
    • pp.463-471
    • /
    • 2017
  • Recently, the number of pet-owning households drastically increased and many people took their pets as lifelong companion animals and look after them like their children. Pet business has continued to increase gradually and the need for pet supplies has increased, too. Though there are a variety of pet supplies in pet dog market which takes up many parts in the pet market, there is no design guideline on pet supplies. Thus, there are many wrong pet supplies design created by wrong idea of people. Therefore, this study aims to suggest the guideline on pet supplies design focusing on the pet-monitoring system among the various pet products. So, the pet-monitoring robot was designed to monitor pet simply using smartphone anywhere on the trip and feed by using bowl that control the signal. This study figured out types and function of existing IP camera, reflected the behavior and physical characteristics of pets and suggested the design guideline which is minimum required as pet-monitoring products. Also, trial product for which design guide was applied was produced to observe the pet behavior and identify problems while operating trial product. However, there was limit in securing data and study period to examine the satisfaction of various pets since the subject of this study was dog and it's required to conduct follow-up study by observing continuously and improving the problems in future to secure more data.