• Title/Summary/Keyword: 메탄 수증기 개질

Search Result 100, Processing Time 0.022 seconds

Efficient Computational Fluid Dynamics Model for Microchannel-Type Steam/Methane Reformers with Nickel Washcoat Catalyst Layers Based on Effectiveness Factor Correlations (촉매유효도 상관식에 기반한 마이크로 채널형 수증기/메탄 개질기의 효율적인 전산유체역학 해석모델)

  • YUN SEOK OH;AREUM JEONG;JIN HYUN NAM
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.33 no.6
    • /
    • pp.749-760
    • /
    • 2022
  • An efficient computational fluid dynamics model was proposed for simulating microchannel-type steam/methane reformers with thin washcoat catalyst layers. In this model, by using the effectiveness factor correlations, the overall reaction rate that occurs in the washcoat catalyst layer could be accurately estimated without performing the detailed calculation of heat transfer, mass transfer, and reforming reactions therein. The accuracy of the proposed model was validated by solving a microchannel-type reformer, once by fully considering the complex steam/methane reforming (SMR) process inside the washcoat layer and again by simplifying the SMR calculation using the effectiveness factor correlations. Finally, parametric studies were conducted to investigate the effects of operating conditions on the SMR performance.

Methane Steam Reforming over $Ni/CeO_2-ZrO_2$ loaded on Fe-Cr Alloy Honeycomb Monolith

  • Lee, Jong-Dae;Kang, Min-Gyu;Lee, Tae-Jun;Cho, Kyung-Tae;Kim, Man-Hoe
    • Journal of the Korean Applied Science and Technology
    • /
    • v.24 no.4
    • /
    • pp.427-435
    • /
    • 2007
  • 에너지원으로서 수소를 생산하기 위하여 하니컴 구조를 갖는 모노리스에 10 wt% $Ni/CeO_2-ZrO_2$ 촉매를 담지한 후 메탄의 수증기 개질 실험을 수행하였다. 다른 $CeO_2/ZrO_2$ 몰비를 갖는 촉매들 중에서, $Ni/CeO_2-ZrO_2(CeO_2/ZrO_2=4/1)$촉매가 $700-800^{\circ}C$에서 높은 메탄의 전환율을 보여 주었다. 10wt% $Ni/CeO_2-ZrO_2$ 촉매가 담지된 금속 모노리스 촉매체는 높은 열전도도와 비표면적들로 인하여 좋은 촉매 특성을 보여줌을 확인할 수 있었다. 또한, 금속모노리스 촉매체는 반응물에서 과다의 수증기에 의한 수소 수율에서 크게 영향을 받지 않음을 알 수 있었다. $GHSV=30,000h^{-1}$, 반응물 비$(H_2O/CH_4=3.0)$ 반응온도 $800^{\circ}C$에서 금속모노리스 촉매체는 98%이상의 메탄의 전환율을 보여주었다. 생성물 가스에서 $CO_2/CO$의 비는 수증기/메탄의 반응물비가 증가할수록 수성가스화 반응에 의하여 증가됨을 알 수 있었다.

[ $CH_4$ ] steam reforming over Ni-Ru bimetallic catalysts (Ni-Ru 계열 촉매 상에서의 $CH_4$ 수증기 개질 반응)

  • Jeong Jin Hyeok;Lee Jung Won;Lee Duek Ki;Kim Dong Hyun;Seo Dong Joo;Seo Yutek;Yoon Wang Lei
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.256-259
    • /
    • 2005
  • 본 연구에서는 기존 니켈 활성성분만의 알루미나담지 촉매에 비해 고온에서의 수소를 사용한 환원 전처리 과정을 거치지 않고도 높은 반응활성을 나타내며, 반응 중 탄소침적에 대한 촉매 저항성에서도 우수한 결과를 나타낸 루테늄-니켈 촉매에 대해보고 하고자 한다. 메탄 수증기 개질 반응을 통해, 루테늄을 최종적으로 담지한 알루미나 담지니켈계 촉매는 별도의 전처리과정 없이 $650^{\circ}C$에서부터 높은 반응성을 보였으며, 루테늄과 니켈을 동시에 담지한 경우보다 더 우수한 활성을 나타내었다. Ru의 담지량을 달리한 실험에서는$RU(0.5)/Ni(20)/Al_2O_3$ 촉매가 가장 높은 활성을 보였다. $H_2-TPR$ 분석 결과, $Ru(0.5)/Ni(20)/A1_2O_3$촉매의 경우 세 가지 환원 피크가 나타났으며, $Ni(20)/A1_2O_3$촉매와 비교해 볼 때, 저온(<$130^{\circ}C)$에서 환원가능한 $RUO_2$의 존재를 확인할 수 있었다. 담지된 RU은 분산도가 높아, XRD분석 결과에서 Ru이나 $RuO_2$의 특성 피크가 존재하지 않았다. 또한 $650^{\circ}C$에서 10시간 개질반응 후 얻어진 촉매에 대해 $O_2-TGA$를 분석한 결과, $Ni(20)/Al_2O_3$촉매는 $-7.2wt\%$ 정도의 큰 무게 감소를 보였으며, 이는 촉매 표면에 생성된 carbon tube에 의한 것임을 SEM 분석을 통해 알 수 있었다 이에 반해, $Ru(0.5)/Ni(20)/Al_2O_$ 촉매는 $O_2-TGA$$0.3wt\%$ 정도 무게 증가에 그쳤으며, SEM 분석상 carbon tube의 생성이 크게 억제되었음을 알 수 있었다.

  • PDF

Study of reforming catalyst for synthesis gas for GTL-FPSO process (GTL-FPSO 공정용 합성가스 제조를 위한 개질 촉매 연구)

  • Park, Dae-Il;Moon, Dong-Ju;Kim, Tae-Gyu
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.414-415
    • /
    • 2012
  • Reforming catalyst of synthesis gas for GTL-FPSO process is presented in this paper. In the present study, the Ni foam catalyst was compared with the existing $Al_2O_3$ pellet catalyst. The SCR reaction on the catalyst was evaluated at the different temperature. The $CH_4$ conversions increased with the reactor temperature. Also, the Ni foam catalyst had a higher $CH_4$ conversion than a pellet catalyst.

  • PDF

Modeling, Simulation and Optimization of Hydrogen Production Process from Glycerol using Steam Reforming (글리세롤로부터 수증기 개질에 의한 수소 생산공정의 모델링, 시뮬레이션 및 최적화)

  • Park, Jeongpil;Cho, Sunghyun;Lee, Seunghwan;Moon, Dong Ju;Kim, Tae-Ok;Shin, Dongil
    • Korean Chemical Engineering Research
    • /
    • v.52 no.6
    • /
    • pp.727-735
    • /
    • 2014
  • For improved sustainability of the biorefinery industry, biorefinery-byproduct glycerol is being investigated as an alternate source for hydrogen production. This research designs and optimizes a hydrogen-production process for small hydrogen stations using steam reforming of purified glycerol as the main reaction, replacing existing processes relying on steam methane reforming. Modeling, simulation and optimization using a commercial process simulator are performed for the proposed hydrogen production process from glycerol. The mixture of glycerol and steam are used for making syngas in the reforming process. Then hydrogen are produced from carbon monoxide and steam through the water-gas shift reaction. Finally, hydrogen is separated from carbon dioxide using PSA. This study shows higher yield than former U.S. DOE and Linde studies. Economic evaluations are performed for optimal planning of constructing domestic hydrogen energy infrastructure based on the proposed glycerol-based hydrogen station.

Availability of SOFC systems equipped with a recycled steam reforming fuel processor (재순환수증기 연료개질형 SOFC시스템의 효용성 평가)

  • Oh, Jin-Suk;Jung, Chang-Sik;Park, Sang-Kyun;Kim, Myoung-Hwan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.7
    • /
    • pp.569-573
    • /
    • 2016
  • Strengthened regulations for atmospheric emissions from ships have created a need for new and alternative power systems that offer low emissions and high energy efficiency. Recently, new types of propulsion power systems, such as fuel cell systems that use hydrogen as an energy source, have gained serious consideration in applications requiring emission control. The purpose of this work is to certify the availability of solid oxide fuel cell (SOFC) systems equipped with recycled steam reforming fuel processors, and to compare their performance with that of extra steam reforming systems. The results demonstrate that the recycled steam reforming system has a slightly lower cell voltage and higher energy efficiency than the extra steam reforming system.

Comparative Study of Nickel and Copper Catalysts Using Al2O3 and Hydrotalcite in Methanol Steam Reforming (메탄올 수증기 개질반응에서 알루미나 및 하이드로탈사이트를 이용한 니켈 및 구리 촉매 비교 연구)

  • Lee, Jae-hyeok;Jang, Seung Soo;Ahn, Ho-Geun
    • Journal of the Korean Institute of Gas
    • /
    • v.26 no.2
    • /
    • pp.14-20
    • /
    • 2022
  • In this study, the catalytic reaction characteristics for producing hydrogen using methanol steam reforming were investigated. Nickel and copper are frequently used in steam reforming reaction and methanol synthesis, were used as main active metals. As a support, hydrotalcite has a high specific surface area, excellent porosity and thermal stability, and has weak Lewis acid sites and basic properties. Hydrotalcite was used to identify catalysts of methanol steam reforming with catalytic activity and their properties. In this research, high reactivity was shown in the catalyst of copper metal with high reducibility. And increasing of active metal loading showed the higher the methanol conversion and hydrogen selectivity.

Production of Hydrogen by Thermochemical Transition of Lauan Sawdust in Steam Reforming Gasification (수증기개질 가스화반응을 이용한 나왕톱밥으로부터 수소제조특성)

  • Park, Sung-Jin;Kim, Lae-Hyun;Shin, Hun-Yong
    • Korean Chemical Engineering Research
    • /
    • v.50 no.5
    • /
    • pp.908-912
    • /
    • 2012
  • Lauan sawdust was gasified by steam reforming for hydrogen production from biomass waste. The fixed bed gasification reactor with 1m height and 10.2 cm diameter was utilized for the analysis of temperature and catalysts effect. Steam was injected to the gasification reactor for the steam reforming effect. Lauan sawdust was mixed with potassium carbonate, sodium carbonate, calcium carbonate, sodium carbonate + potassium carbonate and magnesium carbonate + calcium carbonate catalysts of constant mass fraction of 8:2 which was injected to the fixed gasification equipment. The compositions of production gas of gasification reaction were analyzed at the temperature range from $400^{\circ}C$ to $700^{\circ}C$. Fractions of hydrogen, methane and carbon monoxide gas in the production gas increased when catalysts were used. Fractions of hydrogen, methane and carbon monoxide gas were increased with increasing temperature. The highest hydrogen yield was obtained with sodium carbonate catalyst.

The Study of Model Biogas Catalyst Reforming Using 3D IR Matrix Burner (3D IR 매트릭스 버너에 의한 모사 바이오가스 촉매 개질 연구)

  • Lim, Mun Sup;Chun, Young Nam
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.12
    • /
    • pp.840-846
    • /
    • 2012
  • Global climate changes caused by $CO_2$ emissions are currently debated around the world; green sources of energy are being sought as alternatives to replace fossil fuels. The sustainable use of biogas for energy production does not contribute to $CO_2$ emission and has therefore a high potential to reduce them. Catalytic steam reforming of a model biogas ($CH_4:CO_2$ = 60%:40%) is investigated to produce $H_2$-rich synthesis gas. The biogas utilized 3D-IR matrix burner in which the surface combustion is applied. The ruthenium catalyst was used inside a reformer. Parametric screening studies were achieved as Steam/Carbon ratio, biogas component ratio, Space velocity and Reformer temperature. When the condition of Steam/Carbon ratio, $CH_4/CO_2$ ratio, Space velocity and Refomer temperature were 3.25, 60% : 40%, $14.7L/g{\cdot}hr$ and $550^{\circ}C$ respectively, the hydrogen concentration and methane conversion rate were showed maximum values. Under the condition mentioned above, $H_2$ yield, $H_2$/CO ratio, CO selectivity and energy efficiency were 0.65, 2.14, 0.59, 51.29%.

Recent Progress for Hydrogen Production from Biogas and Its Effective Applications (바이오가스 유래 수소 제조 기술 동향 및 효과적인 적용)

  • Song, Hyoungwoon;Jung, Hee Suk;Uhm, Sunghyun
    • Applied Chemistry for Engineering
    • /
    • v.31 no.1
    • /
    • pp.1-6
    • /
    • 2020
  • Hydrogen production from biogas has received consistent attention due to the great potential to solve simultaneously the issues of energy demands and environmental problems. Practically, biomethane produced by purification/upgrading of biogas can be a good alternative to the natural gas which is a main reactant for a steam methane reforming process. Judging from the economic and environmental impacts, however, the steam biogas and dry reforming are considered to be more effective routes for hydrogen production because both processes do not require the carbon dioxide elimination step. Herein, we highlight recent studies of hydrogen production via reforming processes using biogas and effective applications for earlier commercialization.