DOI QR코드

DOI QR Code

Availability of SOFC systems equipped with a recycled steam reforming fuel processor

재순환수증기 연료개질형 SOFC시스템의 효용성 평가

  • Oh, Jin-Suk (Department of Environmental Energy, Korea Environment Corporation) ;
  • Jung, Chang-Sik (Department of Marine Engineering, Graduate School, Korea Maritime and Ocean University) ;
  • Park, Sang-Kyun (Division of Marine Information Technology, Korea Maritime and Ocean University) ;
  • Kim, Myoung-Hwan (Division of Marine Engineering, Korea Maritime and Ocean University)
  • Received : 2016.08.08
  • Accepted : 2016.09.21
  • Published : 2016.09.30

Abstract

Strengthened regulations for atmospheric emissions from ships have created a need for new and alternative power systems that offer low emissions and high energy efficiency. Recently, new types of propulsion power systems, such as fuel cell systems that use hydrogen as an energy source, have gained serious consideration in applications requiring emission control. The purpose of this work is to certify the availability of solid oxide fuel cell (SOFC) systems equipped with recycled steam reforming fuel processors, and to compare their performance with that of extra steam reforming systems. The results demonstrate that the recycled steam reforming system has a slightly lower cell voltage and higher energy efficiency than the extra steam reforming system.

온실가스 및 대기오염물질 배출 규제는 고효율 및 친환경에 적합한 새로운 선박용 동력장치의 필요성을 제기하고 있다. 최근 이와 같은 문제들을 근본적으로 해결하기 위한 지속가능한 방법으로서 연료전지를 선박의 동력발생장치로 도입하고자 하는 검토가 진행되고 있다. 본 논문은 중대형 선박 적용으로 메탄 개질용 수증기를 내부에서 재순환시키는 고체산화물형 연료전지시스템의 효용성을 외부수증기 공급 방식과 비교하여 분석한 것이다. 그 결과로 재순환수증기 연료개질방식이 셀 전압은 약간 낮게 유기되나 시스템의 전기적 효율은 다소 높아진다는 것을 알 수 있었다.

Keywords

References

  1. M. H. Kim, "Analysis on the technology R&D of the fuel cell systems for power generation in ships," Journal of the Korean Society of Marine Engineering, vol. 31, no. 8, pp. 924-931, 2007 (in Korean). https://doi.org/10.5916/jkosme.2007.31.8.924
  2. M. H. Kim, "Performance and Safety Analysis of Marine Solid Oxide Fuel Cell Power System," Journal of the Korean Society of Marine Engineering, vol. 33, no. 2, pp. 233-243, 2009 (in Korean). https://doi.org/10.5916/jkosme.2009.33.2.233
  3. Gunther Kolb, Fuel Processing for Fuel Cells, WILEY-VCH, 2003.
  4. J. S. Oh, K. J. Lee, S. H. Kim, S. G. Oh, T. W. Lim, J. S. Kim, S. K. Park, M. E. Kim, and M. H. Kim, "Thermodynamic analysis on steam reforming of hydrocarbons and alcohols for fuel cell system," Journal of the Korean Society of Marine Engineering, vol. 35, no. 4, pp. 388-396, 2011 (in Korean). https://doi.org/10.5916/jkosme.2011.35.4.388
  5. D. Shekhawat, J. J. Spivey, and D. A. Berry, Fuel cells: Technologies for Fuel Processing, ELSEVIER, 2011.
  6. F. Mueller, F. Jabbari, R. Gaynor, and J. Brouwer, "Novel solid oxide fuel cell system controller for rapid load following," Journal of Power Sources, vol. 172, no. 1, pp. 308-323, 2007. https://doi.org/10.1016/j.jpowsour.2007.05.092
  7. A. F. Massardo and F. Lubelli, "Internal reforming solid oxide fuel cell-gas turbine combined cycles : Part A-Cell model and cycle thermodynamic analysis," Journal of Engineering for Gas Turbines and Power, vol. 122, pp. 27-35, 2000. https://doi.org/10.1115/1.483187
  8. E. Achenbach, "Three-dimensional and time-dependent simulation of a planar solid oxide fuel cell stack," Journal of Power Sources, vol. 49, no. 1-3, pp. 333-348, 1994. https://doi.org/10.1016/0378-7753(93)01833-4
  9. F. Calise, A. Palombo, and L. Vanoli, "Design and partial load exergy analysis of hybrid SOFC-GT power plant," Journal of Power Sources, vol. 158, no. 1, pp. 225-244, 2006. https://doi.org/10.1016/j.jpowsour.2005.07.088

Cited by

  1. LNG 추진선박에 수소 연료전지 시스템 적용을 위한 개질기의 특성 분석 vol.27, pp.1, 2021, https://doi.org/10.7837/kosomes.2021.27.1.135